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In this work an investigation of the uncertainty principle and the complemen- 
tarity principle is carried through. A study of the physical content of these 
principles and their representation in the conventional Hilbert space formula- 
tion of quantum mechanics forms a natural starting point for this analysis. 
Thereafter is presented more general axiomatic framework for quantum mecha- 
nics, namely, a probability function formulation of the theory. In this general 
framework two extra axioms are stated, reflecting the ideas of the uncertainty 
principle and the complementarity principle, respectively. The quantal features 
of these axioms are explicated. The sufficiency of the state system guarantees 
that the observables satisfying the uncertainty principle are unbounded and 
noncompatible. The complementarity principle implies a non-Boolean proposi- 
tion structure for the theory. Moreover, nonconstant complementary observa- 
bles are always noncompatible. The uncertainty principle and the complemen- 
tarity principle, as formulated in this work, are mutually independent. Some 
order is thus brought into the confused discussion about the interrelations of 
these two important principles. A comparison of the present formulations of the 
uncertainty principle and the complementarity principle with the Jauch formu- 
lation of the superposition principle is also given. The mutual independence of 
the three fundamental principles of the quantum theory is hereby revealed. 

Energia , massa ; 
aika loputon... 
Onko sielu olemassa ? 
Mika maailman muoto on ? 

Osmo Lahfi 

1. I N T R O D U C T I O N  

In  the  f o u n d a t i o n s  o f  q u a n t u m  t h e o r y  the re  exis t  t h ree  f u n d a m e n t a l  

p r inc ip le s :  the  s u p e r p o s i t i o n  p r inc ip le ,  the  u n c e r t a i n t y  p r inc ip le ,  a n d  the  

c o m p l e m e n t a r i t y  p r inc ip le .  
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The superposition principle, which is characteristic for any wave 
theory, was introduced into quantum theory through the works of Louis de 
Broglie [matter-wave hypothesis of 1924; de Broglie, 1925] and Erwin 
Schr6dinger (1926a, b). The full appreciation of the quantum mechanical 
superposition principle is, however, due to Paul Dirac. Indeed, in his book 
The Principles of Quantum Mechanics (originally published in 1930) Dirac 
shows that the principle of superposition of states is one of the most 
fundamental properties of quantum mechanics. In this work he also 
underlines the crucial difference between the superpositions in classical 
theory and in quantum theory. The mathematical structure that Dirac gave 
to the superposition principle was linearity: 

... each state of a dynamical system at a particular time corre- 
sponds to a ket vector, the correspondence being such that if a 
state results from the superposition of certain other states, its 
corresponding ket vector is expressible linearly in terms of the 
corresponding ket vectors of the other states, and conversely 
(Dirac, p. 16). 1 

Dirac's approach to quantum mechanics was later adopted by many 
authors, among them Albert Messiah (1961) and Bernard d'Espagnat 
(1976). 

The superposition principle has also been studied in the quantum 
logic approach to axiomatic quantum mechanics (see, e.g., Jauch 1968; 
Varadarajan, 1968; Gudder, 1970a; and Beltrametti and Cassinelli, 1976). 
In these investigations the importance of the superposition principle in 
quantal description has further been clarified. These investigations have 
revealed among other things that the quantum mechanical superposition 
principle implies the non-Boolean character of the proposition system (see, 
e.g., Jauch, 1968, p. 107). Moreover, the crucial difference between the 
superpositions in classical theory and in quantum theory is now completely 
appreciated; in classical mechanics every superposition is a mixture, 
whereas in quantum mechanics the existence of superpositions of states 
which are not mixtures is relevant (see, e.g., Beltrametfi and Cassinelli, 
1976, pp. 377-381). 

The uncertainty principle and the complementarity principle originated 
through the works of Werner Heisenberg (1927) and Niels Bohr (1927). 
With these two principles two solutions to the interpretation problem of 
the quantum theory were provided. 

According to Heisenberg a consistent application of the concepts of 
classical physics in the quantum domain was secured by posing some 

tWe refer to the 1958 reprint of Dirac's work originally published in 1930. 
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limitations to the simultaneous measurability of certain physical quantities. 
These limitations Heisenberg expressed in his famous uncertainty relations. 

According to Bohr the wave-particle duality was so central a phe- 
nomenon that it should be the natural starting point for any interpretation 
of the quantum theory (cf. the origin of the superposition principle). 
Starting from this duality Bohr developed his notion of complementarity, 
which was to "denote the relation of mutual exclusion characteristic of the 
quantum theory with regard to the application of the various classical 
concepts and ideas" (Bohr, 1929/1978, p. 19). 

In the Hilbert space formulation of quantum mechanics the uncer- 
tainty principle is expressed in the inequality 

Var(A, ~)Var(B, O) ~>�88 ), (AB-BA)4))[ 2, 

~'~ E dom(AB) tn dom(BA) (1.1) 

whereas the complementarity principle is quite generally regarded as "an 
extraneous interpretative addition to it" (Jammer, 1974, p. 60). 

In quantum logics the uncertainty principle and the complementarity 
principle have not met with such a penetrating investigation as the super- 
position principle. It is true that the uncertainty principle and the com- 
plementarity principle have been used in quantum logics, too, e.g., in 
discussing the choice of the syntactic rules for the proposition system, but 
a detailed analysis of these two principles has not thus far been carried out. 
This will be the aim of this work. 

In Sections 2 and 3 of this work the uncertainty principle and the 
complementarity principle are discussed. It is our aim to give to these two 
principles formulations which would quite easily lead to mathematical 
expressions in a certain axiomatic framework for quantum mechanics. 
When such formulations are given one is in position to carry out an active 
study of these principles in the given framework. Also the comparison of 
the two principles can then be made on solid ground. 

Independently of some interpretative questions, nonstatistical inter- 
pretation versus statistical interpretation, the uncertainty principle does not 
give rise to any particular difficulty in this respect. The uncertainty 
relations, the above-mentioned inequality (1.1) provide the mathematical 
formulation of the uncertainty principle. 

The complementarity principle is, however, much more problematic. 
First of all, there is no generally accepted formulation of the complemen- 
tarity principle. Though Bohr introduced the notion of complementarity in 
1927 to acquire a consistent interpretation of the quantum theory, and 
though he published in the following 35 years a series of essays in which he 
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strove to develop the idea of complementarity into a definite philosophical 
viewpoint, he never gave an explicit definition of his notion of com- 
plementarity. Thus our first task is to form a compact picture of the 
viewpoint of complementarity. After analyzing Bohr's writings on com- 
plementarity we conclude that the relation of mutual exclusion is the most 
important element in the notion of complementarity. Based on this relation 
we give a definition of complementary physical quantities. The com- 
plementarity principle then expresses the view that the existence of such 
quantities is essential in the quantal description of any physical system. 

In Section 4 we discuss the two principles in the conventional Hilbert 
space formulation of quantum mechanics. It is well known that for any 
two self-adjoint operators A and B acting on a Hilbert space H the 
inequality (1.1) holds, which is the uncertainty relation for the correspond- 
ing physical quantities. The spectral measures PQ and pe of the canoni- 
cally conjugate position and momentum operators Q and P are shown to 
have the property 

PQ(E)APe(F) =0 for every bounded E and F i n  B(R) (1.2) 

which indicates the complementary nature of these quantities. Thus in the 
Hilbert space formulation of quantum mechanics the complementary 
nature of two physical quantities appears to be a derivable property, too. 
This result seems to be of some interest because it is quite generally taught 
that the complementarity principle is an extraneous interpretative addition 
to the Hilbert space formulation of quantum mechanics, and that the 
uncertainty relations exhibit a mathematical expression for the com- 
plementarity principle. 

After giving a short sketch in Section 5 of the probability function 
formulation of axiomatic quantum mechanics, we discuss in Sections 6 and 
7, respectively, the uncertainty principle and the complementarity principle 
in that general framework. We shall state the two principles as the axioms 
of the theory. It will then be shown that both the axiom of Heisenberg and 
the axiom of complementarity, which exhibit the ideas of uncertainty and 
complementarity, respectively, are both of a quantal nature, thus excluding 
the classical mechanical description of any physical system. The suffi- 
ciency of the state system guarantees that the observables satisfying the 
uncertainty principle are unbounded, and noncompatible. The com- 
plementarity principle implies a non-Boolean proposition structure for the 
theory. Moreover, nonconstant complementary observables are always 
noncompatible. 

The logical independence of the axiom of Heisenberg and the axiom 
of complementarity is shown in Section 8. Thus some order is brought to 
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the confused discussion about the interrelations of these two important 
principles. In actual fact, in the relevant literature the view that the 
complementarity principle contains the uncertainty principle is frequently 
put forward, but also the converse view has its advocates. 

In the final Section of this work we discuss the "logical status" of the 
two axioms. Starting from the classical Hamiltonian description of a given 
physical system we pass on to its quantum mechanical description. It is 
argued that in this "transition" the effect of the uncertainty principle is to 
deform the concept of state, whereas the effect of the complementarity 
principle is to deform the propositional structure. This seems to be satisfac- 
tory because the uncertainty principle is of a statistical character, and the 
complementarity principle is of a nonstatistical character. Thus we are also 
quite naturally led to distinguish between the "uncertainty description" 
and the "complementary description," both of which embrace an im- 
portant feature of the quantal description, but which only together provide 
the proper quantum mechanical description of any physical system. Using 
Jauch's formulation for the superposition principle we shah also show in 
Section 9 that the superposition principle is logically independent from the 
uncertainty principle and the complementarity principle as formulated in 
this work. 

2. ON THE UNCERTAINTY PRINCIPLE 

The clarification of the conceptual foundations of quantum theory 
began with the publication of Werner Heisenberg's historic paper "Uber 
den anschaulichen Inhalt der quantentheoretischen Kinematik und Mecha- 
nik" in 1927. With this paper Heisenberg provided an intuitive understand- 
ing of the fundamental quantum mechanical relations, especially that of 
the "exchange relation" p q - q p  =h/2~ri. The key to this intuitive under- 
standing--as Heisenberg has more recently revealed (Heisenberg, 1955, 
1958, 1967, 1977) was in his recognition that only such experimental 
situations can arise in nature which can be expressed in the mathematical 
formalism of quantum mechanics. 

2.1. Heisenberg's 1927 Paper. In the abstract preceding the paper 
(Heisenberg, 1927) Heisenberg promises to give exact definitions of the 
words "position," "velocity," "energy," etc. (e.g., of an electron), which are 
valid also in quantum mechanics, and to show that the canonically 
conjugate quantities can simultaneously be determined only with a char- 
acteristic uncertainty. According to Heisenberg this uncertainty, which he 
showed to be a mathematical consequence of the Dirac-Jordan transfor- 
mation theory, is the essential reason for the occurrence of statistical 
relations in quantum mechanics. 
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The need for a reinterpretation of the kinematical and mechanical 
concepts in the quantum domain was evident for Heisenberg from the 
fundamental commutation relation pq-qp=h/2cri. In analyzing these 
concepts Heisenberg adopted the operational (or instrumentalist) view of 
reducing the definability of a physical concept to its measurability. This 
can be read from the following citation of Heisenberg: 

If one wants to clarify what is meant by "position of an object," 
e.g., of an electron (relative to a given reference system), one 
has to describe an experiment by which the "position of an 
electron" can be measured; otherwise this concept has no 
meaning at all (Heisenberg, 1927, p. 174). 

We are not, as Heisenberg pointed out, lacking experiments which 
allow us to define the concept "position of an electron." For example, the 
position of an electron can be measured with any desired degree of 
accuracy by means of a microscope employing radiation of sufficiently 
short wavelength, a gamma-ray microscope promising optimal accuracy. 

The Compton effect, however, plays an essential role in such measure- 
ments, and Heisenberg writes: 

At the moment of the position determination, that is, when the 
light quantum is scattered by the electron, the electron changes 
its momentum discontinuously. This change is the greater, the 
smaller is the wave length of the light used, i.e. the more 
accurate is the position determination. Thus, at the moment 
when the position of the electron is known, its momentum can 
be known only up to a magnitude corresponding to the discon- 
tinuous change; so, the more accurate is the position determina- 
tion, the less accurate is the momentum determination and vice 
vers a (Heisenberg, 1927, p. 175). 

Denoting by q~ and Pl the accuracies in the position determination (the 
wavelength of the illuminating light) and in the momentum determination 
(the discontinuous change in the momentum due to the Compton effect), 
respectively, Heisenberg ended with his famous relation qlpl~h. 

Heisenberg analyzed also a Stern-Gerlach experiment for the de- 
termination of the magnetic moment of an atom to show that the uncer- 
tainty E 1 in the energy measurement is the greater, the shorter is the time t x 
spent by the atom in crossing the deviating field: in symbols, Eltl~h. This 
relation indicates "how an accurate energy determination can be obtained 
only by a corresponding uncertainty in time" (Heisenberg, 1927, p. 179). 
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From the above considerations Heisenberg drew the following conclu- 
sion: 

All the concepts that are used in the classical theory for the 
description of a mechanical system can also be defined exactly 
for atomic processes. But the experiments which allow such 
definitions carry with them an uncertainty if they involve the 
simultaneous determination of two canonically conjugate quan- 
tities (Heisenberg, 1927, p. 179). 

The next step in Heisenberg's reasoning was to show that the relation 
qlpl~h, which acquired "a direct intuitive interpretation for the relation 
pq-qp=h/2rzi'" (Heisenberg, 1927, p. 175), is also derivable from the 
quantum theoretical formalism. To do this Heisenberg applied the Di rac -  
Jordan transformation theory. Assuming now a Gaussian distribution for 
the position coordinate q of the electron, he calculated, following Jordan's 
method, the corresponding distribution for the momentum p of the elec- 
tron. This distribution turned out to be a Gaussian distribution, too. 
Identifying now the uncertainties ql and pl  in position and in momentum 
with the half-widths of the Gaussian curves Heisenberg found that qlPl = 
h/2~r. 

In the above-described way Heisenberg established that "the relation 
q l p ~ h  is in direct mathematical connection with the exchange relation 
pq-qp=h/27ri" (Heisenberg, 1927, p. 175), and that it thus offered its 
"direct intuitive interpretation" (Heisenberg, 1927, p. 175). 

2.2. Bohr  versus  H e i s e n b e r g .  In determining the position of an elec- 
tron with the gamma-ray microscope Heisenberg referred to the discon- 
tinuous change of momentum due to the Compton effect as a reason for 
the uncertainty in the momentum of the electron. However, as Bohr 
pointed out and Heisenberg admitted in the postscript to his paper, the 
uncertainty in momentum is essentially due to "the necessary divergence 
of the radiation beam" (Heisenberg, 1927, p. 198) under the microscope. 

In addition to this apparent deficiency in Heisenberg's treatment of 
his thought experiment this paper gave rise to a fundamental disagreement 
between Heisenberg and Bohr. 2 Though Bohr did not question the validity 
of the uncertainty relations he did not agree with Heisenberg about the 
conceptual foundations on which they were founded. 

2Heisenberg has given in his more recent article (Heisenberg, 1967) a very readable account 
of the discussions he had with Bohr on the meaning of the uncertainty relations. The two 
books of Jammer (1966, 1974) also contain much valuable information about this subject 
matter. 
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The origin of this disagreement can be seen to reside in the fact that 
Bohr had progressed in a somewhat different direction than Heisenberg in 
looking for the solution to the interpretation problem of the quantum 
theory. We shall discuss Bohr's approach in more detail in the next section. 

Bohr's point of departure was the fundamental wave-particle duality, 
which he regarded as being so central a phenomenon that it should be the 
natural starting point for any interpretation of the quantum theory. 

Bohr argued that every derivation of the uncertainty relations from 
the analysis of thought experiments must somewhere have recourse to the 
Einstein-de Broglie equations, for otherwise the whole reasoning would 
remain classical and no uncertainty relations could be obtained. The 
Einstein-de Broglie relations E=h~,, p=h/)~ connect in a striking way 
particle attributes with wave attributes and thus express the wave-particle 
dualism. 

Thus in Bohr's view the uncertainty relations indicate that the wave- 
particle duality is the ultimate foundation of the whole theory. On the 
other hand, Heisenberg, knowing that the uncertainty relations are logi- 
cally derivable from the mathematical formalism, did not consider the 
wave-particle duality as a necessary presupposition of the theory. 

The other, though certainly related, disagreement between Bohr and 
Heisenberg is usually characterized by stating that for Heisenberg the 
uncertainty relations indicated limitations of measurement and for Bohr 
they indicated limitations of definition (see, e.g., Petersen, 1968, p. 110). 

Heisenberg's point of departure was, as already discussed, his rein- 
terpretation of classical concepts in the quantum domain by reducing the 
definability of a physical concept to its measurability, Heisenberg then 
ended with the conclusion that "all the concepts that are used in the 
classical theory for the description of a mechanical system can also be 
defined [i.e., measured] exactly for atomic processes . . . .  But," Heisenberg 
continues, "the experiments which allow such definitions [i.e., measure- 
ments] carry with them an uncertainty if they involve the simultaneous 
determination of two canonically conjugate quantities" (Heisenberg, 1927, 
p. 179). 

Bohr's point of departure was, as already referred to, the fundamental 
wave-particle duality. This duality, which is necessarily involved in every 
derivation of the uncertainty relations from thought experiments, gives us 
the limits within which we can without contradiction use classical concepts 
in describing quantum phenomena. In this connection, when speaking 
about conjugate quantities, Bohr declared that "the reciprocal uncertainty 
which always affects the values of these quantities is essentially an out- 
come of the limited accuracy with which changes in energy and momen- 
tum can be defined" (Bohr, 1927/1978, p. 63). 
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After several weeks of painful discussion, as Heisenberg has after- 
wards revealed (Heisenberg, 1967, p. 106), agreement was, however, 
reached. Heisenberg agreed with Bohr that "the uncertainty relations were 
just a special case of the more general complementarity principle" 
(Heisenberg, 1967, p. 106), which made it possible to take wave-particle 
dualism as a suitable starting point for an interpretation of the quantum 
theory. 

2.3. Popper versus Heisenberg.  The uncertainty relation qlpl~h,  
which Heisenberg derived through his gamma-ray microscope thought 
experiment, refers to a single measurement made on a single physical 
system. On the other hand, the mathematical derivation of the uncertainty 
relation qlP 1 = hi2 ~r through the Dirac- Jordan transformation theory is 
based essentially on Born's probability interpretation of the Schr6dinger 
wave function. Hence the latter relation qlPl =h/27r is, contrary to the 
former, of a statistical character. Thus the connection between the two 
derived uncertainty relations q lp l~h  and qlPl =h/2~r is not so obvious. 

In fact, as Jammer has emphasized, Heisenberg's identification of the 
statistical formula qlPl = h/2~r with the relation q l p ~ h  did not have the 
character of a logically necessary conclusion (Jammer, 1966, p. 330). 

We have now learned that Heisenberg interpreted the uncertainty 
relations as penetrating to individual particles and not as a statistical 
spread of the results obtained when measuring the positions and momenta 
of the members of an ensemble of particles. 

On the other hand, Heisenberg had argued that these relations "can 
also be deduced.., from the mathematical scheme of quantum theory and 
its physical interpretation" (Heisenberg, 1930/1949, p. 15). The physical 
interpretation which Heisenberg had in mind in this connection was clearly 
stated in his Chicago lectures in connection with his discussion of the 
concept of an orbit of an electron in an atom. Heisenberg wrote: 

One can repeat this single observation on a large number of 
atoms, and thus obtain a probability distribution of the electron 
in the atom. According to Born, this is given mathematically by 
+*~p. This is the physical significance of the statement that ~b*~p 
is the probability of observing the electron at a given point 
(Heisenberg, 1930/1949, p. 33). 

So it would have been very natural, or rather logical, for Heisenberg 
to have concluded that th e physical significance of the uncertainty rela- 
tions is of a similar character to that of ap*~p, i.e., they express a statistical 
scatter relation. However, as we know, Heisenberg did not do that. He 
preferred to "make uncertainty the central point in the interpretation" 
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(Heisenberg, 1967, p. 105) of the quantal formalism, and to regard this 
uncertainty as "the essential reason for the occurrence of the statistical 
relations in quantum mechanics" (Heisenberg, 1927, p. 172). 

The above view was firmly opposed by Karl Popper. Popper thought 
that an analysis, like that of Heisenberg's, of the relations between the 
uncertainty formulas and the statistical interpretation of the quantum 
theory was not acceptable. In 1934 he wrote: 

It seems to me that the logical relation is just the other way 
round. For we can derive the uncertainty formulae from 
Schr6dinger's wave equation (which is to be interpreted statisti- 
cally), but not this latter from the uncertainty formulae. If we 
are to take due account of these relations of derivability, then 
the interpretation of the uncertainty formulae will have to be 
revised . . . .  It is true that Heisenberg's formulae result as logical 
conclusions from the theory, but the interpretation of these 
formulae as rules limiting attainable precision of measurement, 
in Heisenberg's sense, does not follow from the theory (Popper, 
1968, pp. 223 and 224). 

In this connection Popper suggested a statistical reinterpretation of 
Heisenberg's formulas according to which they express merely statistical 
scatter relations between the parameters involved (see Popper, 1968, pp. 
223-225). 

2.4. Further Developments. The great importance of Heisenberg's un- 
certainty relations in physics was realized very soon. The uncertainty 
relations, or the uncertainty principle as they also were called, became a 
much-discussed subject in physics and subsequently also in philosophy. 
Soon after Heisenberg's fundamental work in 1927 more general deriva- 
tions of these relations were also available. Moreover, the discussion of 
their physical interpretation (see, e.g., Popper's interpretation above) as 
well as their philosophical implications was very lively. So today we really 
have an extensive literature dealing with the subject. 

It is not our aim to give a survey of this literature. A comprehensive 
account of the development of this subject matter can be read from 
Jammer's two historicocritical treatises (Jammer, 1966, 1974). 

Following Jammer (1974), however, we shall distinguish between two 
categories of interpretations of the uncertainty principle, which have 
proved to be most important for the development of quantum mechanics. 
They are as follows: (1) the nonstatistical interpretation 11 according to 
which it is impossible, in principle, to specify the simultaneous values of 
canonically conjugate variables that describe the behavior of a single 
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physical system; and (2) the statistical interpretation 12 according to which 
the product of the standard deviations of two canonically conjugate 
variables has a lower limit given by h/4er. 

The nonstatistical interpretation 11 has its roots in Heisenberg's 
gamma-ray microscope thought experiment, which deals with a single 
measurement made on a single physical system. The statistical interpreta- 
tion originated from the above-mentioned work of Popper. This interpreta- 
tion was elaborated by Henry Margenau (1937) and later developed by the 
advocates of the ensemble interpretation of quantum mechanics (see, e.g., 
Ballentine, 1970; Belinfante, 1978). While the nonstatistical interpretation 
was for many years the dominant interpretation, the statistical interpreta- 
tion seems to have gained acceptance since 1965 (see Jammer, 1974). 
Whereas I l was generally regarded as being based on arguments involving 
specific thought experiments, 12 was held to be established as a straightfor- 
ward logicomathematical consequence of the very formalism of the theory. 

Inquiry for empirical support of the two rival interpretations has not 
led to a definite choice between them. Though it is certainly true that 12 
enjoys a far better empirical backing than 11, it is also true that neither of 
the interpretations is falsified (Jammer, 1974). 

In discussing the logical relations between 11 and 12 Jammer (1974) 
argued that 11 is a logical consequence of 12 if a certain measurement- 
theoretical assumption is accepted, i.e., if we assume that every measure- 
ment involved in this context is repeatable and, if immediately repeated, 
yields the same result as its predecessor. 

2.5. Our Program. In our approach we treat the uncertainty principle 
as an axiom of the theory containing essentially the ideas expressed in 12 
above. Similarly, after analyzing Bohr's notion of complementarity, we 
express its essential content- - the  relation of mutual exclusion-- 
mathematically, and state the complementarity principle as an axiom of 
the theory. We then show that the uncertainty principle and the com- 
plementarity principle, as mathematized in this work, are mutually inde- 
pendent. 

In the light of the results acquired in this work we hold the view that 
the nonstatistical interpretation 11 has resulted from a confusion. The 
arguments which have been given in support of this interpretation are 
based on thought experiments, which, we think, only support Bohr's 
viewpoint of complementarity. The confusion derives from the widely 
accepted view that the uncertainty relations exhibit the mathematical 
expression of Bohr's notion of complementarity. That this is not the case is 
shown in this work. 

We close this section with a speculation on the possible source of the 
above-mentioned confusion. 
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After discussing a lot of thought experiments--a single measurement 
made on a single physical system--Bohr discovered that the experimental 
arrangements intended to define position and momentum observables are 
mutually exclusive. Bohr also liked to give a physical interpretation for the 
statistical law AqAp >1 h/4~r derived by Heisenberg. For lack of the correct 
formula, which we shall subsequently give, Bohr ended with the interpreta- 
tion that "the uncertainty relations are a simple symbolical expression for 
complementarity" (Bohr, 1927//1978, p. 60). 

On the other hand, Heisenberg also used thought experiments in 
discussing the validity of his statistical law. However, as we already 
emphasized, the connection between his gamma-ray thought experiment 
and his statistical law is far from evident. The fact that Heisenberg's 
thought experiment was very similar to those of Bohr's reveals, as we may 
learn from Bohr's own careful investigations, mainly the mutual exclusion 
of the experimental arrangements in question. They only support therefore 
Bohr's idea of complementarity, and thus the nonstatistical law we give for 
Bohr's notion of complementarity. 

To avoid confusion we should finally like to emphasize that the above 
discussion does not aim to provide the obviously incorrect statement that 
the uncertainty relations 

V a r ( A , e p ) V a r ( B , q , ) > ~ � 8 8  2, q, E d o m ( A B ) N d o m ( B A )  

do not admit nonstatistical interpretations, e.g., the one resulting from the 
acceptance of the propensity interpretation of probability (see, e.g., Popper, 
1957, 1959, 1967; Giere, 1973, 1976). 

3. ON THE NOTION OF COMPLEMENTARITY 

Niels Bohr introduced the notion of complementarity for the first time 
in 1927 in his classic Como lecture "The Quantum Postulate and the 
Recent Development of Atomic Theory" to acquire a consistent interpreta- 
tion of the already then fairly well-established quantum mechanical for- 
malism. During the following 35 years Bohr published a series of essays 3 in 
which he strove to develop the idea of complementarity into a definite 
philosophical viewpoint. However, as regards the clarification of the con- 
ceptual foundations of the quantum theory, the most important period of 

3Most of them are collected in the three volumes titled Atomic Theory and the Description of 
Nature, Atomic Physics and Human Knowledge, and Essays 1958-1962 on Atomic Physics and 
Human Knowledge originally published in 1934, 1958, and 1963, respectively. 
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this development seems to begin with his Como lecture in 1927 and to end 
with his refutation 4 of the Einstein- Podolsky- Rosen criticism in 1935. 

In spite of the numerous essays Bohr wrote on the topic, he never gave 
an explicit definition of the notion of complementarity, or wrote an 
extensive treatise on the subject. 

In this section we shall try to trace the main ideas of Bohr which go 
under the notion of complementarity. In developing his ideas Bohr in- 
vestigated "complementary phenomena" not only in physics, but also in 
other fields like biology, psychology, and sociology. Our account is not 
meant to be a complete survey of all the features of complementarity. In 
fact, we are well aware, and also well informed (Petersen, 1968; Jammer, 
1974), of the difficulties involved in this kind of task. For our purpose it is 
enough to study the notion of complementarity in physics only. We thus 
omit every reference to complementarity in fields outside physics proper. 

3.1. Four Kinds of Complementarities. In reading Bohr's writings one 
may easily form the impression that the notion of complementarity does 
appear in rather many different connections. However, one can distinguish 
between four categories of statements which cover most uses of this notion. 
These are the following: (a) complementarity as a relationship between 
descriptions, like space-time description and causal description, (b) com- 
plementarity as a relationship between elementary physical concepts, like 
position and momentum, (c) complementarity of the particle picture and 
the wave picture, and (d) complementarity as a relationship between 
phenomena demanding mutually exclusive experimental arrangements. 

It seems to us that in developing his viewpoint of complementarity 
Bohr gradually shifted the emphasis from category (a) to category (b), and 
ultimately "unified" the first three seemingly different notions of com- 
plementarity under the one appearing in the category (d). 

In fact, in his earlier writings, and especially in his Como lecture, Bohr 
mainly emphasized "the complementary nature of the space-time descrip- 
tion and the claims of causality" (Bohr, 1927/1978, p. 60). 

On the other hand, complementarity as a relationship between ele- 
mentary physical quantities such as position and momentum seems to be 
foremost in his reply to the Einstein-Podolsky-Rosen paper, where he 
referred to complementarity as a relation of mutual exclusion of the 
experimental arrangements intended to define physical concepts such as 
position and momentum. 

4Though the Copenhagen school of quantum theory regarded this paper as a refutation of the 
Einstein-Podolsky-Rosen criticism, it must be admitted that the question is still open. 
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In picking out category (c) we underline the fact that the very origin 
of Bohr's notion of complementarity was in his final acceptance of the 
wave-particle duality of light and matter (Bohr, 1925/1978, 1927/1978; 
see also Jammer, 1966, and Heisenberg, 1967). According to Bohr, the 
dualism between the particle and the wave character of light and matter, 
which is apparent in the well-established Einstein-de Broglie relations, is 
"avoidable only by means of the viewpoint of complementarity" (Bohr, 
1937, p. 294). 

In his writings after 1935 Bohr's main concern was the questions of 
terminology and "dialectics."5 In these investigations Bohr discussed the 
above-mentioned types of complementarity under the same heading, 
namely, in studying phenomena demanding mutually exclusive experimen- 
tal arrangements. A good example of this tendency is the essay entitled 
"Discussion with Einstein on Epistemological Problems in Atomic Physics," 
which is regarded as the dearest exposition of his argumentation 
(Rosenfeld, 1972; Jammer, 1974). 

3.2. Bohr's Early  W o r k  o n  Complementarity. After some introductory 
remarks Bohr opened his Como lecture with the following statement: 

The quantum theory is characterized by the acknowledgment of 
a fundamental limitation in the classical physical ideas when 
applied to atomic phenomena. The situation thus created is of a 
peculiar nature, since our interpretation of the experimental 
material rests essentially upon the classical concepts (Bohr, 
1927/1978, p. 53). 

In this statement with which Bohr introduced the topic, one may a 
posteriori "read" the problem and its solution. The problem is expressed in 
a paradox, which, according to Heisenberg (1958, p. 44), was the starting 
point of the Copenhagen interpretation of quantum theory. This paradox, 
as put in a nutshell by yon Weizs/icker (1971, p. 26; see also Heisenberg, 
1958, p. 44), reads: "classical physics has been superseded by quantum 
theory; quantum theory is verified by experiments; experiments must be 
described in terms of classical physics." The solution of this paradox lies in 
"the acknowledgment of a fundamental limitation in the classical physical 
ideas when applied to atomic phenomena," and it was originally ap- 
proached in two different ways: first through Heisenberg's uncertainty 
relations, second through Bohr's notion of complementarity (see 
Heisenberg, 1958, p. 42). A crucial point in Bohr's approach was his very 
careful examination of the possibilities of definition and observation. 

5 Bohr's term. 
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Bohr based his argumentation on "the fundamental postulate of the 
indivisibility of quantum of action" (Bohr, 1929/1978, p. 10). This pos- 
tulate, which "expresses the essence of the quantum theory," and which 
"attributes to any atomic process an essential discontinuity, or rather 
individuality" (Bohr, 1927/1978, p. 53), implies that "any observation of 
atomic phenomena will involve an interaction with the agency of observa- 
tion not to be neglected" (Bohr, 1927/1978, p. 54). 

When confronting this fact with the classical ideal that "the phenom- 
ena concerned may be observed without disturbing them appreciably" 
(Bohr, 1927/1978, p. 54) Bohr drew some "far-reaching consequences" 
(Bohr, 1927/1978, p. 54). He wrote: 

On one hand, the definition of the state of a physical system, as 
ordinarily understood, claims the elimination of all external 
disturbances. But in that case, according to the quantum pos- 
tulate, any observation will be impossible, and, above all, the 
concepts of space and time lose their immediate sense. On the 
other hand, if in order to make observation possible we permit 
certain interactions with suitable agencies of measurement, not 
belonging to the system, an unambiguous definition of the state 
of the system is naturally no longer possible, and there can be 
no question of causality in the ordinary sense of the word. The 
very nature of the quantum theory thus forces us to regard the 
space-time co-ordination and the claim of causality, the union 
of which characterizes the classical theories, as complementary 
but exclusive features of the description, symbolizing the ideali- 
zation of observation and definition, respectively. (Bohr, 
1927/1978, pp. 54 and 55). 

In the above statement, where the term "complementary" appeared 
for the first time, the mutual exclusion of two descriptions, or, the impossi- 
bility of the simultaneous use of two descriptions, is apparently put 
forward. This feature is also clearly expressed in the following statement: 

... the fundamental postulate of the indivisibility of the quan- 
tum of action.., forces us to adopt a new mode of description 
designated as complementary in the sense that any given appli- 
cation of classical concepts precludes the simultaneous use of 
other classical concepts which in a different connection are 
equally necessary for the elucidation of the phenomena (Bohr, 
1929/1978, p. 10). 

It is also put forward in the more general statement that "the word 
'complementarity' is used to denote the relation of mutual exclusion 
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characteristic of the quantum theorj with regard to the application of the 
various classical concepts and ideas" (Bohr, 1929/1978, p. 19). 

It is important to note that in the above argumentation, as well as 
throughout his writings, Bohr used expressions like "the claim of causality" 
in meaning an unambiguous application of the classical energy and/or  
momentum conservation laws. 

The mutual exclusion of two systems of concepts, or two descrip- 
tions, is, according to Bohr, most strikingly revealed in the fundamental 
Einstein-de Broglie relations 

E=hu and p=h/X 

which form the basis of the particle description of light and the wave 
description of matter. In these formulas, as Bohr wrote (Bohr, 1927/1978, 
p. 58), the two notions of light and also of matter enter into sharp contrast. 
Indeed, the typical particle concepts energy E and momentum p are here 
confronted with the typical wave concepts frequency r and wavelength h 
through the universal quantum of action h. Bohr writes: "Here again we 
are dealing with ... complementary pictures of the phenomena, which only 
together offer a natural generalization of the classical mode of description" 
(Bohr, 1927/1978, p. 56). 

We hope that the above citations are enough to indicate the early state 
of Bohr's thinking on the viewpoint of complementarity, which may be 
summarized as follows: The finite magnitude of the quantum of action 
implies an inevitable coupling between phenomenon and the agency by 
which it is observed. This coupling has a consequence that certain modes 
of descriptions, like space-time description and causal description, which 
in classical description are united, cannot be used simultaneously in 
describing situations in which the quantum of action is relevant. Both 
modes of description being, however, necessary for a full elucidation of the 
phenomena in question. 

3.3. Bohr's 1935 Paper. Bohr's reply in 1935 to the Einstein-Podolsky- 
Rosen paper marks an important phase in the development of the 
viewpoint of complementarity. Its importance lies not only in the refuta- 
tion 6 of the Einstein- Podolsky- Rosen criticism, but also in clarifying the 
role played by the measuring instruments in observational problems, as 
well as in bringing into full relief the mutual exclusive character of the 
experimental arrangements permitting the unambiguous definition of 
complementary physical quantities. It is also in this connection that Bohr 

6See: footnote 4. 
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for the first time explicitly referred to the concepts position and momen- 
tum as complementary quantities by stating "the mutual exclusive char- 
acter of any unambiguous use in quantum theory of the concepts of 
position and momentum" (Bohr, 1935, p. 701). 

To clarify his argumentation Bohr devoted in this paper much space 
to the discussion of the well-known thought experiment 'a particle passing 
through a slit in a diaphragm'. 7 In discussing this, as well as any other 
experiment, it is important from the very beginning to specify what 
purpose a given experimental arrangement is to serve. 

In this connection Bohr considered two experimental arrangements: 
the first allowing one to measure the position of the particle, the second 
giving one a possibility of measuring the momentum of the particle. The 
measurement of the position of the particle consists in establishing a rigid 
connection between the diaphragm, like other parts of the apparatus, and 
the common support which is to define the space frame of reference. The 
measurement of the momentum of the particle, which presupposes an 
unambiguous application of the classical law of conservation of momen- 
tum, demands, on the contrary, some movable parts in the arrangement, 
e.g., the first diaphragm is not rigidly connected with the other parts of the 
apparatus. As a consequence of the inevitable interaction between object 
and measuring agencies caused by the finite magnitude of the quantum of 
action, we are now faced, according to Bohr, in the case of the position 
measurement, with the impossibility of accurately controlling the displace- 
ment of the diaphragm. 

In this connection Bohr also emphasized the difference between the 
two experimental arrangements. In the latter case not only the particle, 
electron or photon, but also the movable diaphragm belongs to the object 
under investigation, i.e., in investigating the position of the diaphragm one 
must take into account the quantum laws governing such measurements. 
In fact, as Bohr in one of his later articles writes, "the main point here is 
the distinction between the objects under investigation and the measuring 
instruments which serve to define, in classical terms, the conditions under 
which the phenomena appear" (Bohr, 1949, p. 221). 

With these two different experimental arrangements Bohr revealed the 
following: 

... the mutual exclusive character of any unambiguous use in 
quantum theory of the concepts of position and momentum 
(Bohr, 1935, p. 701). In fact, it is only the mutual exclusion of 
any two experimental procedures, permitting the unambiguous 

7A refined and still more detailed discussion of this experiment together with some of its 
modifications is given in Bohr (1949, pp. 218-224). 
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definition of complementary physical quantities, which provides 
room for new physical laws, the coexistence of which might at 
first sight appear irreconcilable with the basic principles of 
science. It is just this entirely new situation as regards the 
description of physical phenomena, that the notion of 
complementarity aims at characterizing" (Bohr, 1935, p. 700). 

3.4. Bohr's Late Work on Complementarity. In later years Bohr en- 
tered more directly into the questions of terminology and dialectics (see 
especially Bohr, 1937, 1939, 1948, 1949, 1958a). The necessity of securing 
unambiguous communication, in which the notion of complementarity is 
said to have its epistemological roots (Rosenfeld, 1967), is an apparent 
motive for these investigations. 

In these studies, which were of a more philosophical nature, Bohr, in 
order to avoid certain ambiguities, recommended that the word "phenome- 
non" be used "to refer exclusively to observations obtained under specified 
circumstances, including an account of the whole experiment" (Bohr, 1939, 
p. 24; 1948, p. 317; 1949, p. 238; 1958a, p. 6). 

With this terminology Bohr discussed the notion of complementarity 
in referring to phenomena appearing under mutually exclusive experimen- 
tal arrangements. In fact, in the above-mentioned articles an expression 
like "the study of the complementary phenomena demands mutually 
exclusive experimental arrangements" (Bohr, 1949, p. 211) appears fre- 
quently in his expounding of the viewpoint of complementarity. 

We close our tracing of the ideas behind the viewpoint of com- 
plementarity with the following rather long citation, which, to our judge- 
ment, is quite general in nature. Bohr writes: 

In quantum physics evidence about atomic objects obtained by 
different experimental arrangements exhibits a novel kind of 
complementary relationship. Indeed, it must be recognized that 
such evidence which appears contradictory when combination 
into a single picture is attempted, exhausts all conceivable 
knowledge about the object. Far from restricting our efforts to 
put questions to nature in the form of experiments, the notion 
of complementarity simply characterizes the answers we can 
receive by such inquiry, whenever the interaction between the 
measuring instruments and the objects forms an integral part of 
the phenomena (Bohr, 1958a, p. 4). 

3.5. A Definition and a Principle. The apparent dissimilarities be- 
tween the uses of the term "complementarity" in the given citations from 
Bohr make it very difficult to form a compact picture of the viewpoint of 



Uncertainty and Complementarity in Axiomatic Quantum Mechanics 807 

complementarity, and to speak of the notion of complementarity. These 
dissimilarities appear not only in terminology-complementary descrip- 
tions, complementary pictures, complementary physical quantities, com- 
plementary phenomena, etc.--but also in the direct use of this notion. 

This is especially clear in comparing the statements belonging to 
categories (a) and (c), respectively. In category (a) two descriptions are 
discussed which are separated in quantum physics but which are united in 
classical physics. On the other hand, in category (c) two descriptions are 
discussed which are united in quantum physics but which are uncombin- 
able in classical physics. More specifically: In case (a) the causal space- 
time description of classical physics is in quantum physics broken up into 
two descriptions, namely, into a causal description and into a space-time 
description, which are denoted as being complementary. In case (c) the 
two classically irreconcilable pictures (or modes of description), namely, 
the wave picture and the particle picture, are united in quantum physics 
into "a complementary mode of description." 

Moreover, Bohr's philosophical writings from his later years, in which 
he struggled to develop a general viewpoint of complementarity, and in 
which he discussed all the features of complementarity under the same 
heading, are so vague that they do not readily lend themselves to forming a 
clear-cut notion of complementarity. 

However, we think that a well-established notion of complementarity, 
for which we can find a mathematical formulation, is necessary in any 
rational attempt to exploit Bohr's important ideas. 

Thus far we have consciously omitted in this section every mention of 
Bohr's comprehension of Heisenberg's uncertainty relations. It is clear 
from many connections that for Bohr the uncertainty relations were "a 
simple symbolical expression for the complementary nature of the space- 
time description and the claims of causality" (Bohr, 1927/1978, p. 60). (A 
somewhat more detailed discussion of Bohr's view was given in Section 4.) 
This view is quite generally accepted, as is evident, e.g., in Rosenfeld's 
article (Rosenfeld, 1967, p. 121), where he declares that "in atomic physics 
in the uncertainty relations we can find a mathematical expression for the 
relation of complementarity," or in Jammer's book (Jammer, 1974, p. 160), 
where he states that "the operational implications of the notion of com- 
plementarity are manifested in the indeterminacy relations." This, how- 
ever, does not correspond to our view, which we shall subsequently 
develop. 

In looking for the common denominators of the notions of com- 
plementarity stated above, we note first that the existence of the quantum 
of action is presupposed in all of them. Thus we can say that the physical 
reason for complementarity is Planck's universal quantum of action. The 
relation of mutual exclusion, resulting from the uncontrollable interaction 
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between the objects and the measuring instruments, is also common to all 
of them. The relation of mutual exclusion of the experimental arrange- 
ments, which permit the unambiguous definition of certain physical quan- 
tities, can also easily be given a simple mathematical expression in the 
Hilbert space formulation of quantum mechanics, as well as in more 
general axiomatic frameworks. 

In our approach we appropriate the following definition. 

Definition. Two physical quantities are complementary, if the experi- 
mental arrangements permitting the unambiguous definitions of these 
quantities are mutually exclusive. 

Moreover, we adopt the view that the existence of complementary 
physical quantities is an essential feature of the quantum mechanical 
description. This attitude we express in the following principle. 

The Complementarity Principle. Every physical system possesses, in its 
quantum mechanical description, complementary physical quantifies. 

We are well aware of the fact that the given definition together with 
the stated principle does not exhaust all the ideas of Bohr which go under 
the notion of complementarity. However, there are, as we shall see, several 
reasons that defend our choice. 

The definition leads quite easily to a mathematical expression, which, 
by the way, is of a nonstatistical character. Thus the quantum physical law 
expressed in the principle can be taken into effective use. Moreover, the 
comparison between the uncertainty principle and the complementarity 
principle can now be made on solid ground. 

Finally, we note that the physical basis of the complementarity 
principle, namely, Planck's quantum of action, is implicitly taken into 
account through the definition of complementary physical quantities. 

We close this section with a short bibliographical note. 
The literature dealing with complementarity is quite extensive, and 

also very divergent. As an example of two entirely opposing valuations of 
Bohr's viewpoint of complementarity we may refer on the one hand to 
Rosenfeld, who writes that the solution of the interpretation problem of 
quantum mechanics "received its final formulation from Niels Bohr; the 
new logical instrument which was created by Bohr is called complementar- 
ity" (Rosenfeld, 1961, p. 385), and on the other hand to Popper, who writes 
that "the principle of complementarity has remained completely sterile 
within physics. In twenty-seven years it has produced nothing except some 
philosophical discussion..." (Popper, 1963, p. 101). 

In order to keep our account of Bohr's notion of complementarity at 
reasonable length we have mainly resorted to Bohr's original writings. 
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However, there are some studies on complementarity which, we think, are 
of great help in any attempt to post oneself up on Bohr's philosophy. The 
two historicocritical books of Jammer (1966, 1974) as well as the philo- 
sophical investigation of Petersen (1968) earn special mention for their 
clear exposition of Bohr's ideas. Also the writings of Griinbaum (1957), 
Holton (1970), Hooker (1972), Petersen (1963), Rosenfeld (1961, 1963, 
1967, 1971, 1972), and von Weizs/icker (1955, 1971, 1973a), provide very 
important contributions to the understanding of Bohr's philosophy. 

4. SOME PROPERTIES OF POSITION AND MOMENTUM 
O B S E R V A B L E S  I N  T H E  H I L B E R T  S P A C E  F O R M U L A T I O N  

OF QUANTUM MECHANICS 

In the Hilbert space formulation of quantum mechanics the canoni- 
cally conjugate position and momentum operators Q and P have the 
following important properties: 

Var(Q, ~)Var(P,  4~) >(h/4~r) 2 for all q~ in dom(QP)A dom(PQ) 

(4.1) 

PQ(E)APe(F)----O for all bounded E and F in  B(R) (4.2) 

Here Var(Q, ~)/Var(P,  ~ ) /deno te s  the variance of Q/P/in the state q~, 
PQ/PP/ denotes the spectral measure of Q/P/, and B(R) denotes the set 
of all Borel subsets of the real line R. 

The first of these relations emphasizes the noncommutativity of Q and 
P. Elegant derivations for this inequality, the uncertainty relation for Q 
and P, can be read in malay texts (see, e.g., Jauch, 1968; Prugovecki, 1971; 
Packel, 1974). A popular "textbook interpretation" of this inequality is 
found in the original interpretation of Heisenberg: The inequality (4.1) 
gives a limitation to the accuracy in which position and momentum 
observables can simultaneously be measured. That is, if we increase the 
accuracy in measuring, e.g., the position of our system, the accuracy in 
measuring its momentum inevitably decreases in such a way that the 
product of their suitably defined "uncertainties" is always greater than or 
equal to the constant h/4qr (see, e.g., Heisenberg, 1949; von Neumarm, 
1955; Jauch, 1968). This and other interpretations of the uncertainty 
principle were discussed in Section 2 of this work. 

The second of these relations is a consequence of the unitary equiva- 
lence of Q and P given by the Fourier-Plancherel transformation. We 
shall give a derivation for this result in this section. The physical content of 
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the equation (4.2) is the following: There are no states of a physical system 
such that both the position and the momentum observables are contained 
in given finite intervals. That is, there exists no experimental arrangement 
by which the expressions "the position observable has a value in [Xo, x o + 
Ax]" and "the momentum observable has a value in [Po, Po +Ap]"  can 
simultaneously be verified. We emphasize that this is the case not only for 
the choice AxAp < h, but for any finite Ax and Ap. Equation (4.2) takes 
into account the fact that the experimental arrangements intended to 
define position and momentum observables are mutually exclusive. Thus it 
emphasizes the complementary nature of position and momentum observa- 
bles. 

4.1. A Theorem. We shall now proceed by giving a Hilbert space 
derivation for the above-mentioned property (4.2) of position and momen- 
tum observables. 

To this end we consider the wave mechanical canonical position and 
momentum operators q and p for a particle confined to move in one 
dimension. The Hilbert space H of the physical system concerned is the 
Lebesgue space L2(R). s 

The position operator q is defined as the operator with domain Dq: 

Dq= ( d?~L2( R ) : fRx2leO( x )[2 dx < + oo } 

and which acts on Dq in the following way: 

(qq~)(x) =xq~(x) for all x in R and q~ in Dq 

The momentum operator p conjugate to q is defined by 

p= 2-~ F-lqF, Dp=F-1Dq 

where F is the Fourier-Plancherel  operator of L2(R). The operator F is 
defined pointwise by the equation 

(F,)(x)--  lim Vx R 
T--* + or J T 

which is valid for all (continuously differentiable) ~ in L2(R ). The operator 

8For standard definitions and results appearing in the following we refer to Prugovecki 
(1971). 
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F is unitary and the operators q and p are self-adjoint. Moreover, one can 
easily verify that p is nothing else but the differential operator (h/2~ri) 
(d/dx). 

The spectral measure Pq of q is given by the formula 

Pq(E)dp=XE r for all E in B(R) and 0 in L2(R ) 

where Xe denotes the characteristic function of the set E. 
Because of the unitary equivalence of q and p the corresponding 

spectral measures Pq and PP are unitarily equivalent too. Hence we have 

P ' ( E ) =  2~F-'Pq(E)F for all E in B(R) 

Now we prove a theorem which shows that there are no states in the 
Hilbert  space L2(R ) such that both q and p are contained in given finite 
intervals. 

Theorem 4.1. For  any bounded Borel sets E and F in B(R) we 
have 

Pq(E)/~PP(F) = 0  

Proof For convenience we use in the proof atomic units in which 
h/2~r= 1. Suppose that there exist two finite intervals 1 and J of R such 
that Pq(I)APP(J)--/=O. This implies the existence of a nonzero vector q~ in 
Lz( R ) for which 

Pq( I)eo=O, i.e., eO~Pq( I)( Lz( R )) 

PP(J)ep=O, i.e., q~PP(J)(Lz(R)) 

Now eq(I)=x1 and PP(J)=F-1Pq(J)F so that the above equations can 
be written in the form 

~ ~ 

X/~=q ,  and Xjq~=q~ 

where ~ = Fq~. This means that for every t in R 

= ( 2 . ) -  1/2f + ~176 



812 Lahti 

so that 

q~( x )e-iX' dx=O, vt J= It,, t2] 

Thus we have 

y' •(t)dt=O and d?(t)dt=O 
t2 

which give after the t integrations the equalities 

(a) fzx-'qffx)e-iXt'dx= fx-'q~(x)(tl2mooe-iXt)dx (x~O) 

(b) fzx-lq~(x)e-iXt2dx= fzx-'ep(x)(tl2mooe-iXt)dx (xvaO) 

If there exists an x > 0  such that f f ( x ) ~ 0  (and hence xEI) ,  then by the 
continuity of ~ there exists a neighborhood of x in which q~ is nonzero. In 
this case equation (a) cannot be valid, since the left-hand side is bounded 
and the right-hand side is unbounded. Similarly, if there exists an x < 0 
such that q~(x)q=0 (and hence x E l ) ,  then the equation (b) cannot be valid. 
So we conclude that q~ = 0, which is in contradiction with our assumption. 
This completes the proof. [ ]  

The wave mechanical position and momentum operators q and p 
satisfy the well-known operator equation 

ih qp -pq = ~ 1 (4.3a) 

with a domain which is dense in L2(R ). 
On the other hand, the general problem of finding all the pairs of 

self-adjoint operators Q and P on a Hilbert space H which satisfy the 
equation 

ih 
QP- PQ = "'" I (4.3b) 2~r 

on some "sufficiently large" domain D c H has the well-known solution: 
(Q, P)  is a Schr6dinger couple or a direct sum of Schr6dinger couples (see, 
e.g., Putnam, 1967; Packel, 1974), In this solution the term "sufficiently 
large" receives its meaning in the density of (P+I)(Q+I)D or (Q+I) 
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( P + I ) D  in H. A Schr6dinger couple is a pair (Q, P) of self-adjoint 
operators on H such that Q= UqU -I and P=  UpU -1 for some unitary 
U: L2(R)--~H. 

Let PQ and pe be the spectral measures of the Schr6dinger couple 
(Q, P). Because Q--- UqU -~ and P=  UpU-a we have for any n E N  

( PQ( E)PP( F)) n = u( pq( E)PP( F))nu -1 

The algebraic construction for the lattice meet of any two orthogonal 
projections P and R in H is given by (von Neumann, 1950) 

P A R = s -  lim (PR) n 
n --'-> O 0  

which shows that 

PQ( E)/kPe( F) = u( Pq( E)APP( F))U - '  

We conclude that theorem 4.1 holds for any Schrrdinger couple, and 
hence equation (4.2) is established. 

4.2. Some Remarks. Some remarks are now called for. 
First, we should recall the important distinction between 

the Schrrdinger (or the Weyl) couples and the Heisenberg couples (see 
Garrison and Wong, 1970). A Schrfdinger couple consists of any two 
operators Q and P which are unitarily equivalent, respectively, to the 
position and the momentum operators q and p for a free particle in one 
dimension. A Heisenberg couple (Q, P) consists of two densely defined 
self-adjoint operators together with a dense subspace D C H on which their 
commutator Q P - P Q  is defined and satisfies the relation 

ih (Qe-eo)ep= ~-~lq, for all q~ in D 

It is clear that a Schr6dinger couple is a Heisenberg couple, but the 
converse is not necessarily true. In fact, an example of a Heisenberg couple 
which is not a Schrrdinger couple is provided by the problem of a particle 
in a onedimensional box of unit length. In the usual way defined canonical 
position and momentum operators give such an example (see Garrison and 
Wong, 1970; see also Section 6.3 in our work). 

So we emphasize that Theorem 4.1 may not be true for a Heisenberg 
couple which is not a Schr6dinger couple. 

With this result it is interesting to confront the following statement of 
Bohr which he made in studying the behavior of the electron in the atom 
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with wave mechanical terms. Bohr arrived at the conclusion that if a 
measurement of an electron's coordinate is possible at all, the electron 
must be practically free (Bohr, 1927/1978, pp. 78 and 79; see also 
Heisenberg, 1930/1949, p. 19). 

Second, the fact that there are no states of a physical system such that 
both the position and the momentum observables are contained in given 
finite intervals seems to be well known, though perhaps not often enough 
explicitly stated. In fact, in discussing our theorem with S. Bugajski, he 
kindly informed us of a work of Jauch in which Jauch, while discussing the 
problem of the joint probability distribution for noncompatible observa- 
bles, paid attention to this result (Jauch, 1976). Also M. Jammer kindly 
showed us one of his recent papers (Jammer, 1978) in which he explicitly 
mentioned this fact. 

Third, we shall rediscuss our interpretation for relation (4.2) above. 
Let us begin by discussing briefly the problem of defining position and 
momentum observables in quantum mechanics. 

We recall first the following mathematical results: 

( { [ a ,  b ] :  a, bER)) = B ( R )  (4.4) 

({PQ[a,b]:a, beR})={PQ(E) :EeB(R)}  (4.5) 

({Pe[a,b]:a, beR})---{Pe(E):EeB(R)}  (4.6) 

Re[ a, b]APe[ c, d] =0, 'Ca, b, c, deR (4.7) 

Here ( ( . . . ) )  denotes the Boolean o algebra generated by ( . - - ) .  
In physical terms to define the position of a particle it is enough to 

specify all the yes-no experiments corresponding to projectors PQ[a, b], a, 
b ER. An experimental arrangement corresponding to the yes-no experi- 
ment "'PQ[a, b]'" is given by a diaphragm with a slit of width [a, b] rigidly 
connected to a common support defining the space frame of reference. 

Similarly, to define the momentum of a particle it is enough to specify 
all the yes-no experiments corresponding to projectors PC[c, d], c, dER, 
and to give experimental arrangements allowing one to perform these 
yes-no experiments. 

Now, what Bohr has dearly shown is that the experimental arrange- 
ments needed for the unambiguous definition of the position and the 
momentum of the particle are mutually exclusive, i.e., all the yes-no 
experiments "PQ[a, b]" and "PC[c, d]" are mutually exclusive. This situa- 
tion corresponds exactly to the above Hilbert space result (4.7). 
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Bohr, however, for lack of the correct formula (4.7), interpreted the 
uncertainty relations, statistical relations 

Var(Q, q~)Var(P, ~?) >~(h/4~r) z, V~ E dom(QP) A dom(PQ) 

(4.8) 

"as a simple symbolical expression for the notion of complementarity." 
This widely accepted view, which we think is wrong, has caused much 
confusion (see, e.g., Section 7.1). 

We interpret Theorem 4.1 as a mathematical expression for Bohr's 
notion of complementarity. So we conclude that complementarity is also, 
as the uncertainty relations are, a mathematical consequence of the Hilbert 
space formulation of quantum mechanics. Thus it is not only "an extra- 
neous interpretative addition to it," as, e.g., Jammer argues (Jammer, 1974, 
p. 60). 

In discussing our interpretation of Theorem 4.1 with Professor Jammer, 
he suggested this result should be called a "strong version of the inde- 
terminacy principle" (Jammer, 1978). But a strong version of the inde- 
terminacy principle (4.7) should imply the indeterminacy principle (4.8). 
However, we shall give some arguments in favor of the independence of 
the relations (4.7) and (4.8). 

5. THE (O,S, p) THEORY--A SHORT SKETCH 

In the (O, S, p) formulation of a general physical theory it is assumed 
that with each physical system F one can associate the set of all observa- 
bles O of F a n d  the set of all states S of F, and a functionp:O•215 
-->[0, 1], where B(R) is the set of all Borel subsets of the real line R. The 
function p is interpreted through its range: The number p(A, ~, E) gives 
the probability that a measurement of A in the state a will yield a result in 
E. Thus the function p, which is called the probability function of the 
system F, gives the connection between the theory and the experiment. The 
given interpretation for the function p requires that for each fixed A in O 
and each fixed a in S the set function B(R)-->[0, 1], E--->p(A, ~, E) is a 
probability measure on B(R). 

We shall not go into details in sketching the theory which arises in a 
natural way from this approach. 

Referring to the works of Mackey (1963) and Maczynski (1967, 1973) 
we take for granted that with each physical system F, with probability 
function p, there is associated in a very natural way an orthomodular, 
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a-orthocomplemented partially ordered set L, the logic of p, whose mem- 
bers are called propositions (denoted by a) or experimental propositions 
(denoted by IA, El) or experimental functions (denoted by flA, EI)" Each 
observable A in O determines a unique L-valued measure /~A : B(R)--->L, 
E ~ A ( E  ), and each state a in S determines a unique probability measure 
on Lm~,: L--->[0,1], a--,m~,(a). The family of L-valued measures corre- 
sponding to all observables {/~A : A E O) is surjective, i.e., for any a in L 
there is an A in O and an E in B(R) such that a=/~A(E ). The family of 
probability measures corresponding to all states {m,~ :aES}  is full, i.e., 
order determining. For each A in O, each a in S, and each E in B(R), we 
have 

p( A, or, E) =m~, Olxa( E ) (5.1) 

The number p(A, a, E) is said to give the probability that a measure- 
ment of A in the state a will yield a result in E. In posing some properties 
on the function p :  O•215 1] we end with the given formal 
structure of what is sometimes termed "quantum probability theory." The 
question of the meaning of probability is, however, thus far left open. This 
question is definitely of great importance. Even the various interpretations 
of the quantum theory essentially arise out of the differences in the 
interpretation of the probabilities predicted by the theory (see, e.g., Popper, 
1967; Strauss, 1973; Jammer, 1974; Jauch, 1976; and von Weizs/icker, 
1973). 

A commitment to any specific interpretation of probability, and thus 
of the quantum theory, is irrelevant for the present work. The most 
popular interpretation of quantum theory is the so-called ensemble inter- 
pretation (cf. Section 2.4) which results from adopting the relative frequency 
interpretation of probability. According to the relative frequency interpre- 
tation of probability the probability of an event is the limit of its relative 
frequency in the long run. For detail exposition of this interpretation we 
refer to B. C. van Fraassen (1977). 

The above-sketched (O, S, p)  formulation of a general physical theory 
belongs to the quantum logic approach to axiomatic quantum mechanics. 
The reason we contented ourselves only with a summary of this approach, 
and completely neglected the other approaches, is threefold. First, the 
given structure, which is essentially what we need subsequently, is very 
well known and quite generally accepted. Second, we gave in our licenciate 
thesis (Lahti, 1976b) a fairly extensive survey on the quantum logic 
approach. Last, but not least, the existing literature contains many excel- 
lent survey articles, and also some books, on this as well as on other 
contemporary approaches to axiomatic quantum mechanics. We need 
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mention only Mackey (1963), Jauch (1968), Varadarajan (1968), Gudder 
(1970b, 1977), Greechie and Gudder (1973), Jammer (1974), Piron (1976), 
and Beltrametti and Cassinelli (1976). We note also the forthcoming book 
The Logic of Quantum Mechanics of Beltrametti and Cassinelli. 9 

6. THE AXIOM OF HEISENBERG 

6.1. The Need for an Axiom. In the Hilbert space formulation of 
quantum mechanics for any two self-adjoint operators A and B and for 
any state q~ in dom(AB) (q dom(BA) the following inequality holds 

Var(A, q)) Var(B, q))/> �88 I(q), (A B  - BA)~)I 2 (6.1) 

The left-hand side of this inequality can easily be formulated in 
quantum logics, too. For example, it can be given in terms of experimental 
functions, i.e., mappings flA, el : S--~[0, 1], a--*flA, El(a ) =p (A ,  a, E)  
(Maczynski, 1973; see also Lahti, 1979). 

The right-hand side of the above inequality measures, intuitively 
speaking, the noncommutativity of the observables A and B. An analogy 
for this can be given in terms of what is usually called ideal, pure, 
first-kind measurements (see, e.g., Beltrametti and Cassinelli, 1976). Indeed, 
using state transformations corresponding to this kind of measurements we 
may define for every a and b in L 

~'-]a o ~-~b --  ~']b o ~"~a (6.2) 

as  

(Coo - (a o aa ) ( ,0 (c )  (6.3) 

for every a in S and c in L. Such defined quantity (6.2) can obviously be 
used to "measure" the commutativity (compatability) of a and b. In fact, 
the real number (6.3) is zero for every a in S and c in L if and only if a and 
b commute (are compatible). 

In studying the connection between experimental functions ffA, er: S---~ 
[0, 1] and state transformations f~lA, el: S ~ S  it may be possible to establish 
a relation like (6.1). 

Thus far we do not, however, have any generalizations of the uncer- 
tainty principle for quantum logics (see also Gudder, 1978). The difficulty 

9This book will appear in the Encyclopedia of Mathematics and Applications, G. C. Rota, ed., 
Addison-Wesley, Reading, Massachusetts. 
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in generalizing the uncertainty principle for quantum logics lies in the first 
place in the fact that in quantum logics we do not have any analogy for the 
Hilbert space Schwarz inequality, which is essential in the derivation of the 
inequality (6.1). 

In order to utilize the uncertainty principle in quantum logics we thus 
have to express it as an axiom of the theory. The idea of treating the 
uncertainty principle as an axiom of the theory is almost as old as the 
principle itself. Indeed, in his Chicago lectures Heisenberg writes 

. . . in  many cases it is impossible to obtain an exact determina- 
tion of the simultaneous values of two variables, but rather that 
there is a lower limit to the accuracy with which they can be 
known.. . this  lower limit to the accuracy with which certain 
variables can be known simultaneously may be postulated as a 
law of nature. . .  (Heisenberg, 1930/1949, p. 3). 

With the above considerations in mind we pose the following axiom, 
which we name after Heisenberg. 

The Axiom of Heisenberg. There exist at least two observables A and 
B in O such that in every state a in S (for which the quantities in question 
are well defined) the product of their variance is greater than or equal to a 
given positive constant, say, h. 

It is worth while emphasizing that the interpretation of the probabilis- 
tic concept "variance" appearing in the axiom is, in this connection, left 
open for any consistent interpretation. (See also the corresponding notes 
on p. 800 and 816.) 

As already mentioned, in postulating the uncertainty principle as an 
axiom of the theory we are in a position to take this important principle 
into effective use in studying quantum logics. Moreover, in this way we 
can explicitly introduce the quantum of action into quantum logics. 
Though we have not specified the constant h above, we could equally well 
postulate this constant to be (h/4~r) 2. This is especially important, because 
in usual formulations of quantum logics the root of the quantum theory, 
the quantum of action h, does not appear at all in the theory. 

Before going further we shall make some remarks on the possibilities 
of calculating the constant h. First, we could use the quantity (6.2) above 
for this purpose. This approach, however, does not readily lend itself to 
any concrete calculations. A more specific method is suggested by 
Maczynski (1980). He defines a real-valued function O, which assigns to 
every pair of experimental functions (or propositions) a and b a number 
O<p(a, b)~  1 with the property: p(a, b)--0 if and only if a and b com- 
mute. Maczynski has given an explicit, and in principle easily calculable, 
form for the function p (Maczynski, 1978). 
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6.2. Preliminary Considerations. Each observable A in O and each 
state a in S defines a probability measure m,,o#A:B(R)---~[O, 1], which 
describes the distribution of A in the state a. This means that we can 
define the expectation value of A in the state a in a standard, i.e., 
Kolmogorovian way as the integral 

exp(A, a) = fRi din,, o tz~ (6.4) 

provided that it exists (Loeve, 1955). Here, of course, i denotes the identity 
function on R. 

Let Sff denote the set of all states a in S for which exp(A, a) exists 
and is finite. 

Now we can define the variance of A in the state a as the quantity 

Vat(A, a) = exp(A 2, a) - exp(A, a) 2 (6.5) 

provided that the integrals in question exist. 
Let S v denote the set of all states a in S for which Var(A, a) exists 

and is finite. Note that S f is contained in Sff, but in general not con- 
versely. 

In general for any two observables A and B in O one of the following 
three possibilities holds: 

Var(A, a)Var(B,  a ) = 0  for all a in S (6.6) 

( r e  > O)(3a ~ S)(Var(A, a) Var(B, a) < e) (6.7) 

(:le > O)(Va ~ S)(Var(A, a)Var(B,  a)/> e) (6.8) 

We note that (6.6) is a special case of (6.7). However, we prefer to state it 
separately. 

In discussing the above three possibilities we need some spectral 
concepts, which we recall in the following (see, e.g., Gudder, 1970b, 
Varadarajan, 1968): 

The spectrum of A: o (A)=  N(E :  E c R  closed,/xA(E)= 1). 
The point spectrum of A : op(A)= { h E R :  #A((A})=~0}. 
The continuous spectrum of A : oc(A ) = o ( A ) \  op(A). 
A state a in S is an eigenstate of A if there exists a real number A such 

that m~(/zA(()~)) )--  1. In this case )~ is called the eigenvalue of A corre- 
sponding to the eigenstate a. Note that an eigenvalue may correspond to 
many eigenstates, but an eigenstate can have only one eigenvalue. Clearly, 
eigenvalues of A are contained in the point spectrum of A. 
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A is bounded if o ( A ) c R  is bounded. Note that A is bounded if and 
only if S f  = S (Gudder, 1970b). Of course, if Sff= S, then A is bounded. 
On the other hand, if A is bounded, i.e., S f =  S, then one easily verifies 
that Var(A, a) exists and is finite in every state a in S. Hence we also have: 
A is bounded if and only if Sff= S. 

We pose the following extra assumption on S: 

For every a in L,  a4=0, there exists a state a in S such that me(a ) = 1. 

(6.9) 

That is, we suppose that for every nonzero experimental proposition there 
exists an experimental arrangement, i.e., a preparation of state of F, which 
would verify the proposition with certainty. 

Our motivations for the above assumption are the following: A 
proposition a in L is, by definition, nonzero if and only if there exists a 
state a in S such that m~(a)~O. This means - - i n  accordance with the 
notion of probabi l i ty-- that  the proposition a is "possible." In order for an 
event (or proposition) to be "possible" there must be some conditions 
under which this event is "actual." Adopting the view that observation (or 
measurement) selects from all possible events the actual one which has 
taken place (Heisenberg, 1958), we are led to the assumption (6.9), which is 
usually called the projection postulate) ~ (For a detailed analysis of projec- 
tion postulates in quantum logics see K. Bugajska and S. Bugajski 1973). 

An immediate consequence of the assumption (6.9) is that the point 
spectrum of A contains all the eignevalues of A and only therrL 

We shall proceed by discussing Var(A, a) in some special cases. 
1. Let A be a constant observable, i.e., an observable with range (0, 1 } 

in L. In this case exp(A, a ) = 0  and Var(A, a ) = 0  for every state a in S. 
2. Let A be an elementary observable with range (0, a, a x, 1}, and 

with spectrum {0,1} in R. In this case we have for all ct in S e x p ( A , a ) =  
fnidrn,~ OlZ A--me(a ) and Var(A, a)=m~,(a)-rn,~(a) 2. So Var(A, a ) = 0  if 
and only if rn~(a)=0 or rn~(a) = 1. 

3. An elementary observable is a special case of the discrete observa- 
ble (Gudder, 1970b). Let (ai) be a sequence of mutually disjoint elements 
of L such that Va i = 1, and let (~i) be a sequence of distinct real numbers. 
The map I~:B(R)-->L, E-->lz(E)=V{ai:Xi~E} is an observable with 
spectrum a(A)=ar(A)=(~.i). In this case exp(A,a)=Y~Xim,~(ai) , and 
Var(A, a)=yA2m,~(ai)-[E~im,,(ai)] 2 for every state a in S for which the 
quantifies in question are well defined. 

l~ is also known as the weak form of the projection postulate, and it is usually referred to 
as the sufficiency of the state systems S. 
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4. Let a in S be an eigenstate of A and ~ the corresponding eigenvalue 
of A. In this state a we have exp(A, a ) = ~  and Var(A, a ) - -0 .  

5. In fact, Var(A, a ) -  0 if and only if the probability measure rn~ o#A 
is concentrated on a point, i.e., A is a constant observable or a is an 
eigenstate of A. 

6.3. Three Lemmas. In this section we shall prove the three lemmas 
which help us to characterize pairs of observables satisfying the axiom of 
Heisenberg. The sufficiency of the state system S is assumed throughout 
this section. We begin by proving a lemma which corresponds to the 
intuitive view that there exists no lower limit to the accuracy in measuring 
single physical quantities (cf., e.g., Heisenberg, 1930/1949). 

Lemma 6.1. Let A be any observable in O. For  each e > 0 there 
exists a state a in S such that Var(A, a)<e. 

Proof Let o(A) be the spectrum of A and let ~ by any fixed element in 
o(A). In general ?~Ea(A) if and only if for each ~ E R ,  ~ > 0 ,  
/ zA((~-~ ,  ~ + n ) ) ~ 0  (Gudder, 1970b). Without any loss of generality we 
can suppose that 0 <?,-71 <?~ +71 < oo. Let a be a state in S such that 
m,,(t~A((h-n, ? , + n ) ) )  = 1. In this state a, which depends on ~/, we have 

(f )2 Var(A,a)=fi2dm~ottA - iam~o~A < ( ~ , + n ) 2 -  (A-~)2=4~,~  

which is less than the given positive real number e with the choice 
~/< e/4X. In the case ;k = 0 we immediately get Var(A, a) -<< ~2. [ ]  

As a consequence of this lemma and the note on p. 820 we have the 
following result. 

Lemma 6.2. Let A and B be two observables in O. If one of them 
is bounded, then 

( r e  > 0)(3 a E S)(Var(A,  a)  Var(B, a)  > e) 

Proof Suppose that A is bounded, so that S v =  S. Let M be a positive 
real number such that Var(A, a) < M for all a in S. Applying the above 
lemma for B we can find for any positive real number e a state a in S such 
that Var(A, a)Var(B, a) < M. Var(B, a)  < e. [ ]  

We emphasize that in lemma 6.2 the compatibility of the observables 
A and B is not assumed. In other words, lemma 6.2 is true even for 
noncompatible observables. As an illustration of this we give a Hilbert 
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space description of the problem of a particle in a one-dimensional box of 
unit length. (For another example see the note below lemma 6.3.) Choosing 
the Hilbert space H associated with the system to be the Lebesgue space 
L2(0, 1) we define the canonical position and momentum operators Q and 
P by 

ih d q a ( x ) _  ih 
(Qq~)(x)=xq)(x)  and (Pq,)(x)= 2~r dx -- 2r q)'(x) 

with domains dom(Q)=H and dom(P)= (~EH:  r is absolutely continu- 
ous, r  ~(0)=~(1)}, respectively. Thus the operators Q and P are 
densely defined and self-adjoint. Moreover, they satisfy the equation 
QP-PQ--- ( ih /2~r) l  in d o m ( Q P ) n d o m ( P Q )  which is dense in H. But 
now the position observable Q is bounded, with spectrum o(Q)=[0,1]. 
Thus for every e > 0  we can find a state q in H such that 
Var(Q, r r  For example, any eigenstate r of P will do that. 
We emphasize that this result is in no contradiction with the inequality 
Var(Q, q~)Var(e, ~)>/(h/4rr) 2, which is valid only for those states which 
are in dom(Qe)n  dom(eQ). 

We note that for any state a in Sffn Sff Var(A, a)Var(B, a )=  0 if and 
only if either A or B is a constant observable, or a is an eigenstate of A 
or B. 

Let A and B be compatible observables. This is the case if and only if 
there is an observable C and Borel functions f and g such that A =f(C)  
and B =g(C) (see, e.g., Gudder, 1970b; Varadarajan, 1968). Now we have 
for any state a in S 

f i dm.  o tLA = f fdm. o ~t c (6.1o) 

f i dma o ~A = f f2 dm~ o i~c (6.11) 

in the sense that if one of the integrals appearing in (6.10) [respectively, in 
(6.11)] exists then both of them exist, and in this case they are equal 
(Halmos, 1950). 

Lemma 6.3. If A and B are compatible observables, then 

(re  > 0)(3 a E S)(Var(A, a) Var(B, a) < e) 

Proof Let A and B be two compatible and nonconstant observables. 
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Thus there exist, at least, two bounded Borel sets E C o(A) and F c a ( B )  
7 '~ 7": 

in B(R) such that (cf. the proof of Theorem 7.1.) 

/~A(E)A/tB(F) ~ 0  

Let ECI=[X 1, X2] and FCJ= [*/1, ~2]" ThUS we also have 

~ ( I ) A , ~ ( J ) ~ 0  

Because of the sufficiency of S there is a state ct in S such that 

ma(IzA( I)AtLs( J)) = 1 

and also m,~(l~A(I))= 1 and m, ( /~B(J ) )=  1. Without any loss of general- 
ity we can assume the 0 < ~  <2t 2 and 0 < ,  h <7/2. In the above state a we 
now have 

--~l)----.dfh( 1, ~k2)h('r/l,~2) (,) Var(A,a)Var(B,a)<(X~_X])( , l z2  2 X 

We note that the function h defined above is continuous with respect to 
both variables, and it is also bounded. The sufficiency of S and the 
continuity of h are now enough to prove the lemma. The method is simply 
the following. If the right-hand side of (*) is not less than the given e > 0 
write [~1, ~2)=[~1  ' ~ ] U [ ~ ,  ~k2] with ~1 < ~ < X 2  [e.g., ~=~1  "~t'1!~2 --~1)]" 

Because 0 ~ ,A(I )  A . B ( J )  = (~A([X, ,  ~ ) ) V . A ( [ X ,  ~2]))  A .B (J )  = 
(~A([ hi' ~'))A#B(J))V(ffA([ h,  X2])Aff~(J))  we may assume that 

Because of the sufficiency of S there is a state, say a', in S such that 

m,~.(btA([ h,,  ~ . ) )A#n( J ) )=  1 

In this state a '  we have 

(* ') Var(A, a ' )Var(B,  a') < h(• 1, X)h(~/1, '12) 

Repeat the "splitting of I "  until the right-hand side of (*) is less than the 
given e > 0. This completes the proof. [ ]  

We note that the converse of the above lemma does not hold in 
arbitrary quantum logics. Actually in the next Section we shall give an 
example of a quantum logic (L,  S), L an orthomodular poset, S a full set 
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of states on L, in which we have a pair of noncompatible observables C 
and D for which Var(C, a)Var(D, a)---0 for all a in S. Of course, the above 
Hilbert space description of a particle in a box provides such an example, 
too. 

6.4. The Main Theorem. The axiom of Heisenberg claims the ex- 
istence of such pairs of observables in O for which the condition (6.8) 
above holds. The following theorem characterizes observables of this kind. 
The proof of the theorem is contained in the foregoing discussion. 

Theorem 6.1. Let A and B be two observables in O satisfying the 
axiom of Heisenberg. Then, assuming the sufficiency of S, A and 
B are noncompatible; A and B are unbounded. 

In the classical mechanical description of a physical system it is 
assumed that all the observables (dynamical variables) are compatible. 
Thus we have the following corollary. 

Corollary. The axiom of Heisenberg excludes the classical mecha- 
nical description of a physical system. 

7. THE AXIOM OF COMPLEMENTARITY 

In section 3 of this work we discussed Bohr's notion of complementar- 
ity, gave a definition of complementary physical quantities, and accepted 
the view that the existence of complementary physical quantities is an 
essential feature of the quantum mechanical description. In Section 4 we 
showed that in the Hilbert space formulation of quantum mechanics the 
complementarity of the canonically conjugate position and momentum 
operators is automatically guaranteed through the relation (4.2) of that 
section. In this section we shall discuss complementary physical quantities 
and the complementarity principle in a more general axiomatic framework 
for quantum mechanics. 

7.1. Formulation of the Principle. Let L denote the logic of our 
physical system, i.e., the logic of the probability function p associated with 
F. We consider the map 

q~:LxL-->2Z,(a,b)--->~p(a,b)={cEL:e<a,c<b} (7.1) 

which assigns to each pair of propositions the set of their lower bounds. 
We note that for any a and b in L: 

If ~0(a, b) = {0), then aAb exists and aAb=0.  
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If tp(a, b ) - - ( c ] =  (xEL:  x <-< c} for some c in L, then aAb exists and 
aAb=c.  
If a and b are compatible, with resolution a=alVc  , b=blVc ,  then 
aAb exists and is equal to c. In this case tp(a, b )=(c ] .  
q0(a, a) =q0(a, 1) = q0(1, a ) = ( a ] .  
~0(0, a ) = ~ ( a , 0 ) =  (0),  ~(1, 1)--L. 

Let c ~ ( a ,  b), c~O, and let a be a state in S such that m~(c)= 1.11 In 
this state a we know a priori-- i.e., we do not have to make any measure- 
ments in order to assure th i s - - tha t  our system F has also the properties a 
and b. In other words, in this state ~ the experimental propositions 
a = I A, E J and b = I B, F I are true, i.e., their verification would lead with 
certainty to the "yes" result. 

In accordance with the definition of complementary physical quanti- 
ties, which we gave in section 3, we say that two experimental propositions 
a and b are complementary if no experimental arrangement exists by 
which they can simultaneously be verified. In other words, a and b are 
complementary, if it is not possible to know that the system F has 
simultaneously the properties a and b. Thus for any pair of complementary 
propositions a and b we must require: ~(a, b ) =  (0}, i.e., aAb  exists and is 
equal to 0. 

The lattice structure for L demands that aAb exists for any pair of 
propositions a and b in L. What is the physical reason for claiming that in 
every set ~p(a, b) of lower bounds of a and b there exists the greatest 
element, i.e., g.l.b.(a, b)=aAb  is in ~(a,  b) for every a and b in L? 

So far as we know there exist no physically ground motivations for the 
lattice assumption of the logic L. Evidently, the best known attempt in this 
direction are the filters constructed by J. M. Jauch (1968). A filter, which is 
intended to determine the meet of any two propositions, is composed of an 
infinite series of two alternating experiments. These filters have their origin 
in the well-known mathematical result of yon Neumann (1950) which gives 
an algebraic construction for the meet of any two orthogonal projections E 
and F in a Hilbert space H (cf. Section 4). 

Though we cannot give a physical interpretation for the lattice as- 
sumption of L, and hence we omit it, we must of course require that for  

any two complementary experimental propositions the set of their lower 
bounds does not contain any nonabsurd propositions. 12 However, using 
the notion of complementary propositions we can give the following 

HHere, again, we assume the sufficiency of S. 
t2There are some other approaches to axiomatic quantum mechanics in which the lattice 

assumption does not appear so problematic, see, e.g., D. Finkelstein (1978) or W. Guz 
(1978). 
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characterization of the lattice assumption of L. For  any two propositions a 
and b in L: 

If a and b are complementary, then require ~p(a, b ) =  (0), i.e., aAb exists 
and is equal to O. 
If a and b are not complementary, but (i) they are compatible, then 
deduce (after definition) a=alVc, b=blVc, q~(a, b)---(c], and aAb=c, 
or (ii) they are noncompatible, but what about q0(a, b)? 

Thus the problem of giving a physical interpretation for the lattice meet of 
any two propositions a and b concerns only noncompatible propositions 
which are not complementary, because for complementary propositions we 
must a priori assume it, and for compatible propositions we can a posteriori 
deduce it. 

The above characterization of the lattice assumption also shows that 
the often-stated argument against the lattice structure is untenable. The 
argument goes as follows: Because of the uncertainty relation AxAp >1 h, 
the meet of the propositions a - - " the  position observable has a value in 
[Xo, x 0 + Ax]" and b = "the momentum observable has a value in [P0, Po + 
Ap]" is undefinable whenever AxAp<<h, and thus the lattice assumption 
cannot be made (see, e.g., Gudder,  1967). However, as we now see the 
problem, the propositions a and b are complementary for any Ax and Ap, 
and thus we require a A b = 0 .  

The existence of orthoposets which are not lattices and which do 
admit full sets of states on them makes the lattice question very relevant. 
Such an example is provided with the system (Jls, S) which is defined in 
Figure 1 and in Table 1. J18 is the first known example of an orthoposet 
which is not a lattice (Janowitz, 1963; see also Greechie, 1969). 

In J18 the propositions c and d are noncompatible, but  they are not 
complementary. A fortiori, the observables C and D, defined with the 
Boolean subalgebras (0, c, c x,  1 } and (0, d, d l ,  l )  of JiB together with 
spectra a ( C ) =  (0, 1) and o ( D ) =  (0, l )  in R, are noncompatible and non- 
complementary (see the definition below)�9 We note also that if we equip JiB 
with the full set of states S defined in table 1 we have Var (C, a) Var 
( D , a ) = 0  for all a in S. 

In accordance with the concept of complementary experimental pro- 
positions we say that two observables A and B in O are complementary if 
for any bounded Borel sets E and F in B(R) such that EAa(A)Ca(A) 

�9 E and FAo(B)~o(B) we have cp(tZA(E),/~B(F))=(O}, Le., /~A()A/~B(F)  
exists and is equal to 0. Note that the assumption "ENo(A)Ca(A) and 

~ . . . . . .  7 ~ �9 

FN o(B)~o(B) is needed m the above deflmtlon to avoid the conclusion 
that our complementary observables are unbounded. 

In Section 3 we adopted the view that the existence of complementary 
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Fig. 1. Jls, an orthomodular poset. 

physical quantities is an essential feature of the quantum mechanical 
description. This attitude we expressed in the complementari ty principle. 
Following these ideas we adopt  the following axiom in which we demand 
the existence of complementary  pairs of observables in O. 

The Axiom of Complementarity. There exists in 0 at least a pair of 
nonconstant  complementary observables. 

7.2. The Main Results  

Theorem 7.1. Let A and B be two complementary observables in 
O. A and B are compatible only when either A or B is a constant 
observable. 

Proof. 13 Let A be a constant observable, i.e., an observable with the 
range (0, 1 ) in L. Clearly A and B are complementary and compatible. On 
the other hand, let A and B be complementary and  compatible. Because A 
and B are compatible there is an observable C and Borel functions f and g 
such that A = f ( C )  and B = g ( C ) .  In particular, this means that the Boolean 
sub o algebras (/L4(E): EEB(R)) and (/xs(F):  FEB(R)) of L are con- 
tained in the Boolean sub o algebra (/xc(E):  E~B(R)) of L. Suppose that 
the spectra of A and B are unbounded.  In this case we may  write 

13 The author is indebted to Professor E. Beltrametti for pointing out a deficiency in the 
original proof of the theorem. 
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1= 1A1 =~A(o (A) )A~n(o (B) )= f fA (R)A~ . (R )  

"~ffA U ( k , k + l  A # .  U (1 ,1+1 
k =  --or 1 = - - ~  

=(Vkt~A((k, k + 1] ) )A(Vd~a( ( l ,  1 + 1 ]))  

= Vk(V , ( / zA( (k ,  k +  1 ] )A f t . ( (1 ,1  + 1]) ) )  = Vk (V lO) - -  0 

which is a contradiction. The case of bounded spectrum (spectra) reduces 
immediately to the above case. This completes the proof. [ ]  

The above theorem gives the existence of noncompafible observables 
in O. Hence we have again a corollary. 

Corollary. The axiom of complementarity excludes the classical 
mechanical description of a physical system. 

We consider next a simple example, which further clarifies the content 
of the axiom of complementarity. So let us consider two elementary 
observables A and B in O with ranges {0, a, a • 1} and (0, b, b • 1} in L, 
and with spectra a (A)={1 ,2)  and a ( B ) = ( I , 2 }  in R, respectively. If 
a<~b • i.e., if a and b are orthogonal, and thus aAb=O, then the 
observables A and B are compatible. The Boolean subalgebra of L gener- 
ated by the union of the ranges of A and B being {0, a, a • b, b • aVb, 
a • Ab • 1 } (see Figure 2). Because aAb • = a ~ 0, i.e., ~A({ 1 ))A/_tB({2}) = 
aAb • =ava0, we find that the observables A and B are noncomplemen- 
tary, which is in conformity with Theorem 7.1 above. 

Thus we conclude that the axiom of complementarity implies, in fact, 
the existence of at least two propositions, say a and b, in L, such that 
aAb = 0, but a and b are not orthogonal. 

Let A and B be a pair of nonconstant complementary observables. 
With any two Borel functions f and g of the real line R we define another 
pair of observables C=f(A)  and D=g(B)  with the property 
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~c (E)AI~D(F)=Iz~ ( f - ' (E ) )AI zB(g -X(F) ) ,  VE, F e B ( R )  

Because 

E c o ( C ) ~ f - ' ( E )  c o ( A )  and F c o ( D ) ~ g - ' ( F )  c o ( B )  

we find that the observables C and D are also complementary provided the 
functions f and g are regular enough (i.e., the inverse images of any 
bounded Borel set under f and g are bounded). We do not lack such 
functions. Thus we conclude that any pair of nonconstant complementary 
observables generates a family of such pairs. 

We close this section with a theorem which we use in studying the 
"logical status" of the axiom of complementarity. In this theorem we 
assume the lattice structure for L. This result is closely connected with the 
classic axiomatization of Boolean algebras given by E. V. Huntington 
according to which a Boolean algebra is a complemented lattice in which 
the complementation is a pseudocomplementation (see e.g., Gr/itzer, 1978). 

Theorem 7.2. An ortholattice L is Boolean if and only if the 
following condition is satisfied: 

aAb  = O~a _L b, Va, b E L (7.2) 

Proof. Suppose that L is Boolean, but there exist a and b in L such 
that aAb=O, a ~E b. Because a- -aA1  = a A (  b V b• )=(  a Ab  ) V (  aA b  X )=a  
Ab • we have a < b • , i.e. a _L b. A contradiction. So (7.2) is necessary. It is 
also sufficient, because for any a and b in L we have 

a=(aAb)V((aAb)• and b=(aAb)V((aAb)• 
which, assuming (7.2), shows that a and b are compatible. [ ]  

The axiom of complementar i ty--which is physically based on the 
nonzeroness of h, and which states the existence of complementary physi- 
cal quantities--implies thus a non-Boolean structure for L. This result is 
very useful in discussing the status of complementarity in quantal descrip- 
tion as well as in comparing the uncertainty principle and the complemen- 
tarity principle in our formulations. 

8. THE MUTUAL INDEPENDENCE OF T H E  AXIOMS 

In this section we shall show that the axiom of Heisenberg and the 
axiom of complementarity are logically independent axioms. Thus we have 
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clear evidence that the two central principles of quantum theory, the 
uncertainty principle and the complementarity principle, are independent 
principles. This result is especially important because in reading the 
original papers of Bohr and Heisenberg, as well as some more recent 
writings, one easily gets confused about the interrelation of these two 
principles. 

As we have learned in Section 3, Bohr interpreted uncertainty rela- 
tions "as a simple symbolical expression for the complementary nature of 
the space-time description and the claim of causality" (Bohr 1927//1978, 
p. 60). The view that the uncertainty relations exhibit a mathematical 
expression for complementarity is quite generally accepted (see Section 3). 
For example, A. Messiah teaches us that Heisenberg's uncertainty relations 
are a very general consequence of the statistical interpretation of the 
wave-particle duality (Messiah, 1961, p. 116). 

Though Heisenberg wrote in his reminiscence (Heisenberg, 1967) that 
"the uncertainty relations were just a special case of the more general 
complementarity principle," it is, however, evident from his earlier writings 
(see especially Heisenberg 1927, 1949, 1955) that he did not regard wave- 
particle duality, the very origin of Bohr's notion of complementarity, as a 
presupposition for uncertainty relations. A view conflicting with the one 
mentioned above can be read in Bernard d'Espagnat's recent book where 
he writes that "the Heisenberg uncertainty relations can be considered 
as a generalization of the complementarity principle" (d'Espagnat, 1976, 
p. 253). 

Let us consider two simple observables A and B in O defined by 

range(A)=(O,a,a• o(A)--  (h, ,) t :} 

range(B)=(O,b,b• e(B)  = (Xi,)t~} 

See Figure 3 for definitions of A and B. We note that A and B correspond 
to the photon polarization experiments with polarization angles, say, ~ and 
r such that ~:/:~' (mod ,r) (see, e.g., Piron, 1976). Clearly A and B are 
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complementary observables. Note also that they are noncompatible (cf. the 
example in Section 7). Let a E S be an eigenstate of A corresponding to the 
eigenvalue X1- In this state a we have V a r ( A , a ) = 0  and hence 
Var(A, a)Var(B, a ) =  0. Thus we have the following theorem. 

Theorem 8.1. The axiom of complementarity does not imply the 
axiom of Heisenberg. 

Next we shall discuss the mat ter  from the reverse viewpoint. Suppose 
that A and B are two observables in O satisfying the axiom of Heisenberg. 
If there exist bounded Borel sets E and F in B(R) such that 
cp(#A(E ) , /~s (F ) )~  (0), then, assuming the sufficiency of S, there exists a 
state a in SfNSff  such that m ~ o / z a ( I ) = l  and m~ol~s(J)=l, where 
I = [ - 2~, 2~] is the smallest closed interval containing E and J = [ -  ~', 2~'] is 
the smallest closed interval containing F. In this state a we have Vat(A, a) 
<~2 and Vat(B, a ) < h  '2. On the other hand, for every state a in S f A S  v 
we also have Vat(A, a)Var(B,  a)/> h 2 for a given positive real number h. 
This means that ()~)~,)2/> h 2. This shows that the axiom of Heisenberg does 
not exclude the possibility of A and B not being complementary. However, 
the axiom of Heisenberg puts a limitation on the "size" of the sets E and F 
for which we may have ~0(/za(E), i~s(F))q= (0). This limitation is ( ~ , ) 2  
h 2, where h and 2~' are defined as above. 

An example of observables of this kind was given by S. Bugajski 
(1978). In the following we shall reproduce this example in a slightly 
modified form, which is more suitable for our purposes. 

We consider a particle moving in one dimension. The classical Hamil- 
tonian description of this system is carried out in the phase space M =  R 2, 
whose Borel structure B(M)=B(R 2) describes in a natural way the 
propositional system of the particle. We denote it as L. The dynamic 
variables of the particle are expressed as real valued Borel measurable 
functions on M, i .e. ,as mappings f :  M~R with property f -I(E)EB(M) 
whenever EEB(R). For example, the position coordinate and the 
momentum coordinate of the particle are defined as fq: M~R, (q ,p )~  
fq(q, p) =q and fp : g~R, (q ,  p)~fp(q, p) =p, respectively. The 0 homo- 
morphisms induced by the dynamic variables of the particle are called the 
observables of the particle. We denote the set of all observables (A : B(R) 
~ L ,  A o homomorphism) as O. For example, the position observable and 
the momentum observable of the particle are defined as Q: B(R)~L, E ~  
Q(E) =fq -  l (E)  and P : B(R)---~L, E--->P(E) =fp-  I(E), respectively. A state 
of the particle is defined as a point of M. The points of M can be identified 
with unit measures on L. To allow also nontrivial probability measures on 
L as states of the particle (mixed states) we generalize thus: a state of the 
particle is a probability measure on L. We denote the set of all states 
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{a: L---~[0, 1], a probability measure) as S. As usual the function p : O• 
xB(R)--->[0,1] is defined through the relation p(A,a, E)=a(A(E)) for 
every A in O, a in S, and E in B(R). Thus the system (M, L, O, S, p) 
specifies the classical mechanical description of our physical system. 

Next we fix a nonnegative real number h, and define a subset S h of S 
as 

Sh= (aES:  Var(Q, a)Var(P, a) >/h 2} 

That the set S h is order determining, i.e., full, and convex is shown by 
Bugajski (1978). Thus we have a theory (M, L, O, S h, p) in which 

Var( Q,a) Var( P,a) >>-h z for all a in S h (8.1) 

but in which for every nonvoid E and F in B(R) 

Q( E ) A P (  F) =E• (8.2) 

(see Figure 4.) 
The above example suggests a very interesting viewpoint of the nature 

of the quantal description, which we shall develop in the following chapter. 
We conclude the above discussion with the theorem, which closes the 
question of the mutual independence of our axioms. 

Theorem 8.2. The axiom of Heisenberg does not imply the axiom 
of complementarity. 

9. DISCUSSION 

The uncertainty principle and the complementarity principle embrace 
characteristic features of the quantum theory. These two principles, as 
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mathematicized in this work, are logically independent. In this final section 
we shall discuss some features of these principles and develop a view of the 
nature of quantal description which arises out of the preceding discussion. 
Moreover, we shall show that our formulations of these principles are 
logically independent of the Jauch formulation of the superposition princi- 
ple. 

The complementarity principle is physically based on the nonzeroness 
of h, and it claims the existence of complementary physical quantities. This 
principle was shown to imply a non-Boolean structure for the proposition 
system L. In fact, as the proof of the Theorem 7.2 in Section 7.2 indicates, 
the axiom of complementarity" leads to the break of the distributive law. 
Thus we can say that the quantal feature of the description resulting from 
the complementarity principle is incorporated in the non-Boolean proposi- 
tion structure L. 

We next discuss the role of the uncertainty principle in the description 
of any physical system. We begin with the theory (M, L, O, S, p) which 
specifies the classical mechanical description of the system concerned (cf. 
p. 832). 

We now transfer to the quantum mechanical description, i.e., we 
suppose that the actions involved in our problem are comparable with the 
quantum of action h, and hence h is now relevant in our description. In 
this case "it is," according to Heisenberg, "impossible to obtain an exact 
determination of the simultaneous values of two variables, but rather that 
there is a lower limit to the accuracy with which they can be known" 
(Heisenberg, 1930/1949, p. 3). 

We proceed by postulating "this lower limit to the accuracy with 
which certain variables can be known simultaneously" as a law of nature. 
This means that from the above set of states S, which describes all the 
classically possible experimental arrangements, we must pick out the states, 
i.e., experimental arrangements, which fulfill the axiom of Heisenberg. We 
do it by choosing Sh = (a ES : Vat(Q, a)Var(P, et) > h2}. So we still have 
the phase space M, the Boolean proposition structure L=B(M), and the 
dynamic variables expressed as measurable functions M--->R. But now the 
set of physical states Sh is essentially different from the original S. S h is 
order determining and convex, but it does not contain any pure states. 
Restricting S to S h the position and the momentum observables Q and P 
automatically satisfy the uncertainty relation 

Var(Q, et)Var(P, or)/> h 2 for all a in Sh 

but they are not complementary, because Q(I)/X,P(J)~O for any non- 
void intervals I and J of R. So the quantal feature of the above description 
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is entirely incorporated in the state system Sh, and the effect of the 
uncertainty principle is only to deform the concept of state, i.e., to restrict 
S t o  S h. 

We are now in a position to advocate the following view of the nature 
of quantal description. 

Schematically: 

uncertainty 
quantum 

of 
action h 

--~ generalization of --. "uncertainty 
the concept of state description" 

--~ complementarity--> degeneration of the --~ "complementary 
Boolean proposition description" 
structure 

In words. Quantum theory is the theory of quanta. The finite magni- 
tude of the quantum of action h is the physical reason for the uncertainty 
principle as well as for the complementarity principle. The uncertainty 
principle and the complementarity principle, as formulated in this work, 
are logically independent principles. On the one hand, the uncertainty 
principle leads to a natural generalization of the classical concept of state 
that is meaningful in quantum mechanics, too. On the other hand, the 
complementarity principle implies that the Boolean o-algebra structure of 
the set of all propositions in classical mechanics degenerates into a non- 
Boolean structure. 

The effect of the uncertainty principle is thus to deform the concept of 
state, whereas the complementarity principle leads to a nondistributive 
propositional structure. (A somewhat similar view was developed in Lahti 
1976a.) This is satisfactory because the uncertainty principle is of a 
statistical character, and the complementarity principle is of a nonstatisti- 
cal character. 

We are now also in a position to distinguish between two kinds of 
description, namely, the "uncertainty description" and the "complemen- 
tary description," both of which embrace an important feature of the 
quantal description, but which only together provide the proper quantum 
mechanical description of any physical system. 

Throughout this work we have given some examples of quantum 
logics which do satisfy either the axiom of Heisenberg or the axiom of 
complementarity but not both. If we adopt the view that in the proper 
quantum mechanical description of any physical system both of the two 
axioms are to be satisfied, we have to conclude that the quantum logics 
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referred to do not provide examples of proper quantum mechanical de- 
scriptions. 

We close this work with a comparison of the superposition principle, 
as formulated by Jauch (1968), with the complementarity principle and the 
uncertainty principle, as formulated in this work. We shall conclude the 
following: 

(1) The complementarity principle does not imply 
the uncertainty principle. 

(2) The uncertainty principle does not imply 
the complementarity principle. 

(3) The complementarity principle does not imply 
the superposition principle. 

(4) The superposition principle does not imply 
the complementarity principle. 

(5) The uncertainty principle does not imply 
the superposition principle. 

(6) The superposition principle does not imply 
the uncertainty principle. 

The above stated interrelations of the three fundamental principles of 
quantum theory seem to be quite satisfactory. 

We have already given some arguments in favor of the independence 
of the complementarity principle and the uncertainty principle. Equally, 
the independence of the uncertainty principle and the superposition princi- 
ple appears to be acceptable. 

The appearance of the superposition principle in quantum mechanics 
is said to result from the wave-particle duality, through the work of Louis 
de Broglie in 1924. Niels Bohr developed his notion of complementarity 
from this fundamental duality, too. The discovery of superselection rules 
(Wick, Wightman, and Wigner, 1952; see also Jauch 1968, and Beltrametti 
and Cassinelli, 1976) has revealed that the superposition principle is not a 
universally valid principle, whereas it is quite generally thought that the 
complementarity principle, as well as the uncertainty principle, is of that 
general nature. Thus the relation (3), and also (5), above appears to be 
acceptable, too. Though the relation (4) is, of course, acceptable as a 
mathematical fact, we have to admit that its physical content is not so 
clear to us. We now leave this question open. 

In Dirac's formulation of quantum mechanics one assumes the follow- 
ing: 

"each state of a dynamical system at a particular time corre- 
sponds to a ket vector, the correspondence being such that if a 
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state results f rom the superposifion of certain other states, its 
corresponding ket vector is expressible linearly in terms of the 
corresponding ket vectors of the other states, and converly" 
(Dirac, 1930//1958, p. 16). 

Thus if the state R can be formed by superposition of states A and B, then 
the corresponding ket vectors [ R ) ,  [ A ) ,  and I B )  are connected by  

] R ) = c l ] A ) + c z l B )  (9.1) 

for some complex numbers c I and r The equation (9.1) together with the 
above citation of Dirac indicates that "the superposition relationship is 
symmetrical between all the three states A, B and R "  (Dirac 1930/1958, p. 
16). 

Let L be the proposition system of a given physical system. In order to 
give Jauch's  formulation for the superposition principle one has to assume 
that L is an orthomodular  lattice containing atoms. According to Jauch 
(1968) the proposition system L satisfies the superposition principle if for 
every pair of distinct atoms e 1 and e 2 in L there is a third a tom e 3 in L, 
distinct from e 1 and e 2, such that 

e 1Ve2 = e I Ve3 ---- e2Ve3 (9.2) 

The similarity of the above two formulations for the superposition 
principle is remarkable. In the following we shall discuss only the Jauch 
formulation of the superposition principle without explicitly mentioning it 
every time. 

An immediate consequence of the superposition principle is the break 
of the distributive law in L. Really, assuming the distributive law to hold in 
L one would conclude that e 1 = e  I A ( e  1 k/e2) = e I /~(e  3 ~ /e2)  = ( e  1/~e3) V 
(e 1Ae2)=  0 V 0 =  0, which is a contradiction. Thus both the complementar-  
ity principle and the superposition principle imply a nondistributive struc- 
ture for L. 

Previously we argued that the complementari ty principle, or more 
precisely the axiom of complementari ty,  implies the following: 

Property 9.1. There exist in L, at least, two propositions, say, a and b 
such that a / k b  = O, but a ~ b 

Let e 1, e 2, and e 3 be three distinct atoms of L satisfying (9.2). So we 
have el A e2 -- e lAe3 ---" e2Ae3 -- 0, and e l V e  2 = e l V e  3 = e 2 V e  3. Assume that 
e I _1_ e 2 and e t I e3, which implies that e 1 is compatible both with e 2 and e 3. 
In this case we would have e I = e l / k ( e l k / e 3 ) =  e l / k ( e 2 V e 3 ) =  ( e l / k e 2 ) V ( e  1 
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Ae3)----0 , which is a cont rad ic t ion .  So we conc lude  that  the  superpos i t ion  
pr inciple ,  too, impl ies  P rope r ty  9.1 for  the p ropos i t i on  sys tem L. 

W e  conc lude  tha t  a necessa ry  cond i t ion  tha t  a g iven p ropos i t i on  
sys tem L satisfies ei ther  the c o m p l e m e n t a r i t y  pr inc ip le  or  the superpos i t ion  
pr inc ip le  is that  L possesses P rope r ty  9.1. P rope r ty  9.1, which  the com-  
p l emen ta r i t y  pr inc ip le  a n d  the  superpos i t ion  p r inc ip le  share,  m a y  well b e  
connec t ed  to the c o m m o n  root ,  the f u n d a m e n t a l  w a v e - p a r t i c l e  dual i ty ,  of 

these two principles .  
The  wel l -known o r t h o m o d u l a r  la t t ice D16 (see, e.g., Greech ie  a n d  

G u d d e r ,  1973) provides  us wi th  an  example  of p ropos i t ion  systems which  
do  no t  sat isfy the supe rpos i t ion  pr inciple ,  bu t  in which we have  comple -  
m e n t a r y  phys ica l  quant i t ies .  Converse ly ,  every f in i te -d imens iona l  H i lbe r t  
space,  e.g., the th ree -d imens iona l  euc l idean  space R 3, p rovides  us wi th  an  
example  of  q u a n t u m  logics sa t is fying the superpos i t ion  pr inciple ,  bu t  
which  do  not  admi t  c o m p l e m e n t a r y  phys ica l  quant i t ies .  

The  examples  which  we gave to show the i ndependence  of the 
complemen ta r i t y  pr inc ip le  a n d  the uncer t a in ty  pr inc ip le  will  also ind ica te  
the  independence  of the superpos i t ion  pr incip le  a n d  the uncer t a in ty  pr inci-  

ple. 
W e  conc lude  that  the  above  re la t ions  (1 ) - (6 )  are, a t  least ,  well-  

es tab l i shed  ma thema t i ca l  facts.  
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